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Chapter 1

Introduction

1.1 Synchronization

In common use, “synchronization” means making two things happen at the
same time. In computer systems, synchronization is a little more general; it
refers to relationships among events—any number of events, and any kind of
relationship (before, during, after).
Computer programmers are often concerned with synchronization con-

straints, which are requirements pertaining to the order of events. Examples
include:

Serialization: Event A must happen before Event B.

Mutual exclusion: Events A and B must not happen at the same time.

In real life we often check and enforce synchronization constraints using a
clock. How do we know if A happened before B? If we know what time both
events occurred, we can just compare the times.
In computer systems, we often need to satisfy synchonization constraints

without the benefit of a clock, either because there is no universal clock, or
because we don’t know with fine enough resolution when events occur.
That’s what this book is about: software techniques for enforcing synchro-

nization constraints.

1.2 Execution model

In order to understand software synchronization, you have to have a model of
how computer programs run. In the simplest model, computers execute one
instruction after another in sequence. In this model, synchronization is trivial;
we can tell the order of events by looking at the program. If Statement A comes
before Statement B, it will be executed first.
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There are two ways things get more complicated. One possibility is that
the computer is parallel, meaning that it has multiple processors running at the
same time. In that case it is not easy to know if a statement on one processor
is executed before a statement on another.
Another possibility is that a single processor is running multiple threads of

execution. A thread is a sequence of instructions that execute sequentially. If
there are multiple threads, then the processor can work on one for a while, then
switch to another, and so on.
In general the programmer has no control over when each thread runs; the

operating system (specifically, the scheduler) makes those decisions. As a result,
again, the programmer can’t tell when statements in different threads will be
executed.
For purposes of synchronization, there is no difference between the parallel

model and the multithread model. The issue is the same—within one processor
(or one thread) we know the order of execution, but between processors (or
threads) it is impossible to tell.
A real world example might make this clearer. Imagine that you and your

friend Bob live in different cities, and one day, around dinner time, you start to
wonder who ate lunch first that day, you or Bob. How would you find out?
Obviously you could call him and ask what time he ate lunch. But what if

you started lunch at 11:59 by your clock and Bob started lunch at 12:01 by his
clock? Can you be sure who started first? Unless you are both very careful to
keep accurate clocks, you can’t.
Computer systems face the same problem because, even though their clocks

are usually accurate, there is always a limit to their precision. In addition,
most of the time the computer does not keep track of what time things happen.
There are just too many things happening, too fast, to record the exact time of
everything.
Puzzle: Assuming that Bob is willing to follow simple instructions, is there

any way you can guarantee that tomorrow you will eat lunch before Bob?
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1.3 Serialization with messages

One solution is to instruct Bob not to eat lunch until you call. Then, make
sure you don’t call until after lunch. This approach may seem trivial, but the
underlying idea, message passing, is a real solution for many synchronization
problems.
At the risk of belaboring the obvious, consider this timeline.
You

a1 Eat breakfast

a2 Work

a3 Eat lunch

a4 Call Bob

Bob

b1 Eat breakfast

b2 Wait for a call

b3 Eat lunch

The first column is a list of actions you perform; in other words, your thread
of execution. The second column is Bob’s thread of execution. Within a thread,
we can always tell what order things happen. We can denote the order of events

a1 < a2 < a3 < a4

b1 < b2 < b3

where the relation a1 < a2 means that a1 happened before a2.
In general, though, there is no way to compare events from different threads;

for example, we have no idea who ate breakfast first (is a1 < b1?).
But with message passing (the phone call) we can tell who ate lunch first

(a3 < b3). Assuming that Bob has no other friends, he won’t get a call until
you call, so b2 > a4 . Combining all the relations, we get

b3 > b2 > a4 > a3

which proves that you had lunch before Bob.
In this case, we would say that you and Bob ate lunch sequentially, because

we know the order of events, and you ate breakfast concurrently, because we
don’t.
When we talk about concurrent events, it is tempting to say that they happen

at the same time, or simultaneously. As a shorthand, that’s fine, as long as you
remember the strict definition:

Two events are concurrent if we cannot tell by looking at the program
which will happen first.

Sometimes we can tell, after the program runs, which happened first, but
often not, and even if we can, there is no guarantee that we will get the same
result the next time.

1.4 Non-determinism

Concurrent programs are often non-deterministic, which means it is not pos-
sible to tell, by looking at the program, what will happen when it executes.
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Here is a very simple example of a non-deterministic program:
Thread A

a1 print "yes"

Thread B

b1 print "no"

Because the two threads run concurrently, the order of execution depends
on the scheduler. During any given run of this program, the output might be
“yes no” or “no yes”.
Non-determinism is one of the things that makes concurrent programs hard

to debug. A program might work correctly 1000 times in a row, and then crash
on the 1001st run, depending on the particular decisions of the scheduler.
These kinds of bugs are almost impossible to find by testing; they can only

be avoided by careful programming.

1.5 Shared variables

Most of the time, most variables in most threads are local, meaning that they
belong to a single thread and no other threads can access them. As long as
that’s true, there tend to be few synchronization problems, because threads
just don’t interact.
But usually some variables are shared among two or more threads; this

is one of the ways threads interact with each other. For example, one way
to communicate information between threads is for one thread to read a value
written by another thread.
If the threads are unsynchronized, then we cannot tell by looking at the

program whether the reader will see the value the writer writes or an old value
that was already there. Thus many applications enforce the contraint that
the reader should not read until after the writer writes. This is exactly the
serialization problem in Section 1.3.
Other ways that threads interact are concurrent writes (two or more writ-

ers) and concurrent updates (two or more threads performing a read followed
by a write). The next two sections deal with these interactions. The other
possible use of a shared variable, concurrent reads, does not generally create a
synchronization problem.

1.5.1 Concurrent writes

In the following example, x is a shared variable accessed by two writers.
Thread A

a1 x = 5

a2 print x

Thread B

b1 x = 7

What value of x gets printed? What is the final value of x when all these
statements have executed? It depends on the order in which the statements are
executed, called the execution path. One possible path is a1 < a2 < b1, in
which case the output of the program is 5, but the final value is 7.
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Puzzle: What path yields output 5 and final value 5?
Puzzle: What path yields output 7 and final value 7?
Puzzle: Is there a path that yields output 7 and final value 5? Can you

prove it?
Answering questions like these is an important part of concurrent program-

ming: What paths are possible and what are the possible effects? Can we prove
that a given (desirable) effect is necessary or that an (undesirable) effect is
impossible?

1.5.2 Concurrent updates

An update is an operation that reads the value of a variable, computes a new
value based on the old value, and writes the new value. The most common kind
of update is an increment, in which the new value is the old value plus one. The
following example shows a shared variable, count, being updated concurrently
by two threads.
Thread A

a1 count = count + 1

Thread B

b1 count = count + 1

At first glance, it is not obvious that there is a synchronization problem here.
There are only two execution paths, and they yield the same result.
The problem is that these operations are translated into machine language

before execution, and in machine language the update takes two steps, a read
and a write. The problem is more obvious if we rewrite the code with a tempo-
rary variable, temp.
Thread A

a1 temp = count

a2 count = temp + 1

Thread B

b1 temp = count

b2 count = temp + 1

Now consider the following execution path

a1 < b1 < b2 < a2

Assuming that the initial value of x is 0, what is its final value? Because
both threads read the same initial value, they write the same value. The variable
is only incremented once, which is probably not what the programmer had in
mind.
This kind of problem is subtle because it is not always possible to tell, look-

ing at a high-level program, which operations are performed in a single step and
which can be interrupted. In fact, some computers provide an increment in-
struction that is implemented in hardware cannot be interrupted. An operation
that cannot be interrupted is said to be atomic.
So how can we write concurrent programs if we don’t know which operations

are atomic? One possibility is to collect specific information about each opera-
tion on each hardware platform. The drawbacks of this approach are obvious.
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The most common alternative is to make the conservative assumption that
all updates and all writes are not atomic, and to use synchronization constraints
to control concurrent access to shared variables.
The most common constraint is mutual exclusion, or mutex, which I men-

tioned in Section 1.1. Mutual exclusion guarantees that only one thread accesses
a shared variable at a time, eliminating the kinds of synchronization errors in
this section.

1.5.3 Mutual exclusion with messages

Like serialization, mutual exclusion can be implemented using message passing.
For example, imagine that you and Bob operate a nuclear reactor that you
monitor from remote stations. Most of the time, both of you are watching for
warning lights, but you are both allowed to take a break for lunch. It doesn’t
matter who eats lunch first, but it is very important that you don’t eat lunch
at the same time, leaving the reactor unwatched!
Puzzle: Figure out a system of message passing (phone calls) that enforces

these restraints. Assume there are no clocks, and you cannot predict when lunch
will start or how long it will last. What is the minimum number of messages
that is required?



Chapter 2

Semaphores

In real life a semaphore is a system of signals used to communicate visually,
usually with flags, lights, or some other mechanism. In software, a semaphore is
a data structure that is useful for solving a variety of synchronization problems.

Semaphores were invented by Edsgar Dijkstra, a famously eccentric com-
puter scientist. Some of the details have changed since the original design, but
the basic idea is the same.

2.1 Definition

A semaphore is like an integer, with three differences:

1. When you create the semaphore, you can initialize its value to any integer,
but after that the only operations you are allowed to perform are increment
(increase by one) and decrement (decrease by one). You cannot read the
current value of the semaphore.

2. When a thread decrements the semaphore, if the result is negative, the
thread blocks itself and cannot continue until another thread increments
the semaphore.

3. If the value of the semaphore is negative and a thread increments it, one
of the threads that is waiting gets woken up.

To say that a thread blocks itself (or simply “blocks”) is to say that it
notifies the scheduler that it cannot proceed. The scheduler will prevent the
thread from running until it is notified otherwise. Since the blocked thread
cannot run, some other thread has to unblock it. In the tradition of mixed
computer science metaphors, unblocking is often called “waking”.

That’s all there is to the definition, but there are some consequences of the
definition you might want to think about.
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• In general, there is no way to know before a thread decrements a
semaphore whether it will block or not (in specific cases you might be
able to prove that it will or will not).

• After a thread increments a semaphore and another thread gets woken
up, both threads continue running concurrently. There is no way to know
which thread, if either, will continue immediately.

Finally, you might want to think about what the value of the semaphore
means. If the value is positive, then it represents the number of threads that
can decrement without blocking. If it is negative, then it represents the number
of threads that have blocked and are waiting. If the value is zero, it means there
are no threads waiting, but if a thread tries to decrement, it will block.

2.2 Syntax

In most programming environments, an implementation of semaphores is avail-
able as part of the programming language or the operating system. Different
implementations sometimes offer slightly different capabilities, and usually re-
quire different syntax.
In this book I will use a simple pseudo-language to demonstrate how

semaphores work. The syntax for creating a new semaphore and initializing
it is

Listing 2.1: Semaphore initialization syntax

1 Semaphore fred = 1

When Semaphore appears with a capital letter it indicates a type of variable.
In this case, fred is the name of the new semaphore and 1 is its initial value.
The semaphore operations go by different names in different environments.

The most common alternatives are

Listing 2.2: Semaphore operations

1 fred.increment ()

2 fred.decrement ()

and

Listing 2.3: Semaphore operations

1 fred.signal ()

2 fred.wait ()

and

Listing 2.4: Semaphore operations

1 fred.V ()

2 fred.P ()
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It may be surprising that there are so many names, but there is a reason for the
plurality. increment and decrement describe what the operations do. signal
and wait describe what they are often used for. And V and P were the original
names proposed by Dijkstra, who wisely realized that a meaningless name is
better than a misleading name1.
I consider the other pairs misleading because increment and decrement

neglect to mention the possibility of blocking and waking, and semaphores are
often used in ways that have nothing to do with signal and wait.
If you insist on meaningful names, then I would suggest these:

Listing 2.5: Semaphore operations

1 fred.increment_and_wake_a_waiting_process_if_any ()

2 fred.decrement_and_block_if_the_result_is_negative ()

I don’t think the world is likely to embrace either of these names soon. In
the meantime, I choose (more or less arbitrarily) to use signal and wait.

2.3 Why semaphores?

Looking at the definition of semaphores, it is not at all obvious why they are use-
ful. It’s true that we don’t need semaphores to solve synchronization problems,
but there are some advantages to using them:

• Semaphores impose deliberate constraints that help programmers avoid
errors.

• Solutions using semaphores are often clean and organized, making it easy
to demonstrate their correctness.

• Semaphores can be implemented efficiently on many systems, so solutions
that use semaphores are portable and usually efficient.

1Actually, V and P aren’t completely meaningless to people who speak Dutch.
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Chapter 3

Basic synchronization

patterns

This chapter presents a series of basic synchronization problems and shows ways
of using semaphores to solve them. These problems include serialization and
mutual exclusion, which we have already seen, along with others.

3.1 Signaling

Possibly the simplest use for a semaphore is signaling, which means that one
thread sends a signal to another thread to indicate that something has happened.

Signaling makes it possible to guarantee that a section of code in one thread
will run before a section of code in another thread; in other words, it solves the
serialization problem.

Assume that we have a semaphore named sem with initial value 0, and that
Threads A and B have shared access to it.

Thread A

1 statement a1

2 sem.signal ()

Thread B

1 sem.wait ()

2 statement b1

The word statement represents an arbitrary program statement. To make
the example concrete, imagine that a1 reads a line from a file, and b1 displays
the line on the screen. The semaphore in this program guarantees that Thread
A has completed a1 before Thread B begins b1.

Here’s how it works: if thread B gets to the wait statement first, it will find
the initial value, zero, and it will block. Then when Thread A signals, Thread
B proceeds.

Similarly, if Thread A gets to the signal first then the value of the semaphore
will be incremented, and when Thread B gets to the wait, it will proceed im-
mediately. Either way, the order of a1 and b1 is guaranteed.
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This use of semaphores is the basis of the names signal and wait, and
in this case the names are conveniently mnemonic. Unfortunately, we will see
other cases where the names are less helpful.
Speaking of meaningful names, sem isn’t one. When possible, it is a good

idea to give a semaphore a name that indicates what it represents. In this case
a name like a1Done might be good, where a1Done = 0 means that a1 has not
executed and a1Done = 1 means it has.

3.2 Rendezvous

Puzzle: Generalize the signal pattern so that it works both ways. Thread A has
to wait for Thread B and vice versa. In other words, given this code
Thread A

1 statement a1

2 statement a2

Thread B

1 statement b1

2 statement b2

we want to guarantee that a1 happens before b2 and b1 happens before a2. In
writing your solution, be sure to specify the names and initial values of your
semaphores (little hint there).
Your solution should not enforce too many constraints. For example, we

don’t care about the order of a1 and b1. In your solution, either order should
be possible.
This synchronization problem has a name; it’s a rendezvous. The idea is

that two threads rendezvous at a point of execution, and neither is allowed to
proceed until both have arrived.
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3.2.1 Rendezvous hint

The chances are good that you were able to figure out a solution, but if not,
here is a hint. Create two semaphores, named aArrived and bArrived, and
initialize them both to zero.
As the names suggest, aArrived indicates whether Thread A has arrived at

the rendezvous, and bArrived likewise.
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3.2.2 Rendezvous solution

Here is my solution, based on the previous hint:

Thread A

1 statement a1

2 aArrived.signal ()

3 bArrived.wait ()

4 statement a2

Thread B

1 statement b1

2 bArrived.signal ()

3 aArrived.wait ()

4 statement b2

While working on the previous problem, you might have tried something like
this:

Thread A

1 statement a1

2 bArrived.wait ()

3 aArrived.signal ()

4 statement a2

Thread B

1 statement b1

2 bArrived.signal ()

3 aArrived.wait ()

4 statement b2

This solution also works, although it is probably less efficient, since it might
have to switch between A and B one time more than necessary.

If A arrives first, it waits for B. When B arrives, it wakes A and might
proceed immediately to its wait in which case it blocks, allowing A to reach its
signal, after which both threads can proceed.

Think about the other possible paths through this code and convince yourself
that in all cases neither thread can proceed until both have arrived.

3.2.3 Deadlock #1

Again, while working on the previous problem, you might have tried something
like this:

Thread A

1 statement a1

2 bArrived.wait ()

3 aArrived.signal ()

4 statement a2

Thread B

1 statement b1

2 aArrived.wait ()

3 bArrived.signal ()

4 statement b2

If so, I hope you rejected it quickly, because it has a serious problem. As-
suming that A arrives first, it will block at its wait. When B arrives, it will also
block, since A wasn’t able to signal aArrived. At this point, neither thread can
proceed, and never will.

This situation is called a deadlock and, obviously, it is not a successful
solution of the synchronization problem. In this case, the error is obvious, but
often the possibility of deadlock is more subtle. We will see more examples later.
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3.3 Mutex

A second common use for semaphores is to enforce mutual exclusion. We have al-
ready seen one use for mutual exclusion, controlling concurrent access to shared
variables. The mutex guarantees that only one thread accesses the shared vari-
able at a time.
A mutex is like a token that passes from one thread to another, allowing one

thread at a time to proceed. For example, in The Lord of the Flies a group of
children use a conch as a mutex. In order to speak, you have to hold the conch.
As long as only one child holds the conch, only one can speak.
Similarly, in order for a thread to access a shared variable, it has to “get”

the mutex; when it is done, it “releases” the mutex. Only one thread can hold
the mutex at a time.
Puzzle: Add semaphores to the following example to enforce mutual exclu-

sion to the shared variable count.
Thread A

count = count + 1

Thread B

count = count + 1
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3.3.1 Mutual exclusion hint

Create a semaphore named mutex that is initialized to 1. A value of one means
that a thread may proceed and access the shared variable; a value of zero means
that it has to wait for another thread to release the mutex.
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3.3.2 Mutual exclusion solution

Here is a solution:
Thread A

mutex.wait ()

// critical section

count = count + 1

mutex.signal ()

Thread B

mutex.wait ()

// critical section

count = count + 1

mutex.signal ()

Since mutex is initially 1, whichever thread gets to the wait first will be able
to proceed immediately. Of course, the act of waiting on the semaphore has the
effect of decrementing it, so the second thread to arrive will have to wait until
the first signals.
I have indented the update operation to show that it is contained within the

mutex.
In this example, both threads are running the same code. This is sometimes

called a symmetric solution. If the threads have to run different code, the solu-
tion is asymmetric. Symmetric solutions are often easier to generalize. In this
case, the mutex solution can handle any number of concurrent threads without
modification. As long as every thread waits before performing an update and
signals after, then no two threads will access count concurrently.
Often the code that needs to be protected is called the critical section, I

suppose because it is critically important to prevent concurrent access.
In the tradition of computer science and mixed metaphors, there are several

other ways people sometimes talk about mutexes. In the metaphor we have been
using so far, the mutex is a token that is passed from one thread to another.
In an alternative metaphor, we think of the critical section as a room, and

only one thread is allowed to be in the room at a time. In this metaphor,
mutexes are called locks, and a thread is said to lock the mutex before entering
and unlock it while exiting. Occasionally, though, people mix the metaphors
and talk about “getting” or “releasing” a lock, which doesn’t make much sense.
Both metaphors are potentially useful and potentially misleading. As you

work on the next problem, try out both ways of thinking and see which one
leads you to a solution.

3.4 Multiplex

Puzzle: Generalize the previous solution so that it allows multiple threads to
run in the critical section at the same time, but it enforces an upper limit on
the number of concurrent threads. In other words, no more than n threads can
run in the critical section at the same time.
This pattern is called amultiplex. In real life, the multiplex problem occurs

at busy nightclubs where there is a maximum number of people allowed in the
building at a time, either to maintain fire safety or to create the illusion of
exclusivity.
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At such places a bouncer usually enforces the synchronization constraint by
keeping track of the number of people inside and barring arrivals when the room
is at capacity. Then, whenever one person leaves another is allowed to enter.
Enforcing this constraint with semaphores may sound difficult, but it is

almost trivial.
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3.4.1 Multiplex solution

To allow multiple threads to run in the critical section, just initialize the mutex
to n, which is the maximum number of threads that should be allowed.
At any time, the value of the semaphore represents the number of additional

threads that may enter. If the value is zero, then the next thread will block
until one of the threads inside exits and signals. When all threads have exited
the value of the semaphore is restored to n.
Since the solution is symmetric, it’s conventional to show only one copy of the

code, but you should imagine multiple copies of the code running concurrently
in multiple threads.

Listing 3.1: Multiplex solution

1 multiplex.wait ()

2 critical section

3 multiplex.signal ()

What happens if the critical section is occupied and more than one thread
arrives? Of course, what we want is for all the arrivals to wait. This solution
does exactly that. Each time an arrival joins the queue, the semaphore is decre-
mented, so that the value of the semaphore (negated) represents the number of
threads in queue.
When a thread leaves, it signals the semaphore, incrementing its value and

allowing one of the waiting threads to proceed.
Thinking again of metaphors, in this case I find it useful to think of the

semaphore as a set of tokens (rather than a lock). As each thread invokes wait,
it picks up one of the tokens; when it invokes signal it releases one. Only a
thread that holds a token can enter the room. If no tokens are available when
a thread arrives, it waits until another thread releases one.
In real life, ticket windows sometimes use a system like this. They hand

out tokens (sometimes poker chips) to customers in line. Each token allows the
holder to buy a ticket.

3.5 Barrier

Consider again the Rendezvous problem from Section 3.2. A limitation of the
solution we presented is that it does not work with more than two threads.
Puzzle: Generalize the rendezvous solution. Every thread should run the

following code:

Listing 3.2: Barrier code

1 rendezvous

2 critical point

The synchronization requirement is that no thread executes critical point

until after all threads have executed rendezvous.
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You can assume that there are n threads and that this value is stored in a
variable, n, that is accessible from all threads.
When the first n − 1 threads arrive they should block until the nth thread

arrives, at which point all the threads may proceed.
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3.5.1 Barrier hint

For many of the problems in this book I will provide hints by presenting the
variables I used in my solution and explaining their roles.

Listing 3.3: Barrier hint

1 int n // the number of threads

2 int count = 0

3 Semaphore mutex = 1

4 Semaphore barrier = 0

count keeps track of how many threads have arrived. mutex provides exclu-
sive access to count so that threads can increment it safely.

barrier is locked (zero or negative) until all threads arrive; then it should
be unlocked (1 or more).
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3.5.2 Barrier non-solution

First I will present a solution that is not quite right, because it is useful to
examine incorrect solutions and figure out what is wrong.

Listing 3.4: Barrier non-solution

1 rendezvous

2
3 mutex.wait ()

4 count = count + 1

5 mutex.signal ()

6
7 if (count == n) barrier.signal ()

8
9 barrier.wait ()

10
11 critical point

Since count is protected by a mutex, it counts the number of threads that
pass. The first n−1 threads wait when they get to the barrier, which is initially
locked. When the nth thread arrives, it unlocks the barrier.
Puzzle: What is wrong with this solution?
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3.5.3 Deadlock #2

The problem is a deadlock.
An an example, imagine that n = 5 and that 4 threads are waiting at the

barrier. The value of the semaphore is the number of threads in queue, negated,
which is -4.
When the 5th thread signals the barrier, one of the waiting threads is allowed

to proceed, and the semaphore is incremented to -3.
But then no one signals the semaphore again and none of the other threads

can pass the barrier. This is a second example of a deadlock.
Puzzle: Fix this problem.
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3.5.4 Barrier solution

Finally, here is a working barrier:

Listing 3.5: Barrier solution

1 rendezvous

2
3 mutex.wait ()

4 count = count + 1

5 mutex.signal ()

6
7 if (count == n) barrier.signal ()

8
9 barrier.wait ()

10 barrier.signal ()

11
12 critical point

The only change is another signal after waiting at the barrier. Now as each
thread passes, it signals the semaphore so that the next thread can pass.
This pattern, a wait and a signal in rapid succession, occurs often enough

that it has a name; it’s called a turnstile, because it allows one thread to pass
at a time, and it can be locked to bar all threads.
In its initial state (zero), the turnstile is locked. The nth thread unlocks it

and then all n threads go through.
After the nth thread, what state is the turnstile in? Is there any way the

barrier might be signalled more than once?
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3.5.5 Deadlock #3

Since only one thread at a time can pass through the mutex, and only one
thread at a time can pass through the turnstile, it might seen reasonable to put
the turnstile inside the mutex, like this:

Listing 3.6: Bad barrier solution

1 rendezvous

2
3 mutex.wait ()

4 count = count + 1

5 if (count == n) barrier.signal ()

6
7 barrier.wait ()

8 barrier.signal ()

9 mutex.signal ()

10
11 critical point

This turns out to be a bad idea because it can cause a deadlock.
Imagine that the first thread enters the mutex and then blocks when it

reaches the turnstile. Since the mutex is locked, no other threads can enter,
so the condition, count==n, will never be true and no one will ever unlock the
turnstile.
In this case the deadlock is fairly obvious, but it demonstrates a common

source of deadlocks: blocking on a semaphore while holding a mutex.
Does this code always create a deadlock? Can you find an execution path

through this code that does not cause a deadlock?

3.6 Reusable barrier

Often a set of cooperating threads will perform a series of steps in a loop and
synchonize at a barrier after each step. For this application we need a reusable
barrier that locks itself after all the threads have passed through.
Puzzle: Rewrite the barrier solution so that after all the threads have passed

through, the turnstile is locked again.
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3.6.1 Reusable barrier hint

Here’s a hint about how to do it. Just as the nth thread unlocked the turnstile
on the way in, it should be the nth thread that locks it on the way out.
Here are the variables I used:

Listing 3.7: Reusable barrier hint

1 int count = 0

2 Semaphore mutex = 1

3 Semaphore turnstile = 0
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3.6.2 Reusable barrier non-solution #1

Once again, we will start with a simple attempt at a solution and gradually
improve it:

Listing 3.8: Reusable barrier non-solution

1 rendezvous

2
3 mutex.wait ()

4 count++

5 mutex.signal ()

6
7 if (count == n) turnstile.signal ()

8
9 turnstile.wait ()

10 turnstile.signal ()

11
12 critical point

13
14 mutex.wait ()

15 count--

16 mutex.signal ()

17
18 if (count == 0) turnstile.wait ()

count++ is shorthand for count = count + 1 and count-- for count =

count - 1

Notice that the code after the turnstile is pretty much the same as the code
before it. Again, we have to use the mutex to protect access to the shared
variable count.
Tragically, though, this code is not quite correct. Puzzle: What is the

problem?
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3.6.3 Reusable barrier problem #1

There is a problem spot at Line 6 of the previous code.
If the n − 1th thread is interrupted at this point, and then the nth thread

comes through the mutex, both threads will find that count==n and both
threads will signal the turnstile. In fact, it is even possible that all the threads
will signal the turnstile.
If this barrier isn’t reused, then multiple signals are not a problem. For a

reusable barrier, they are.
Puzzle: Fix the problem.
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3.6.4 Reusable barrier non-solution #2

This attempt fixes the previous error, but a subtle problem remains.

Listing 3.9: Reusable barrier non-solution

1 rendezvous

2
3 mutex.wait ()

4 count++

5 if (count == n) turnstile.signal ()

6 mutex.signal ()

7
8 turnstile.wait ()

9 turnstile.signal ()

10
11 critical point

12
13 mutex.wait ()

14 count--

15 if (count == 0) turnstile.wait ()

16 mutex.signal ()

In both cases the check is inside the mutex so that a thread cannot be
interrupted after changing the counter and before checking it.
Tragically, this code is still not correct. Remember that this barrier will be

inside a loop. So, after executing the last line, each thread will go back to the
rendezvous.
Puzzle: Identify and fix the problem.
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3.6.5 Reusable barrier hint

As it is currently written, this code allows a precocious thread to pass through
the second mutex, then loop around and pass through the first mutex and the
turnstile, effectively getting ahead of the other threads by a lap.
To solve this problem we can use two turnstiles.

Listing 3.10: Reusable barrier hint

1 Semaphore turnstile = 0;

2 Semaphore turnstile2 = 1;

3 Semaphore mutex = 1;

Initally the first is locked and the second is open. When all the threads
arrive at the first, we lock the second and unlock the first. When all the threads
arrive at the second we relock the first, which makes it safe for the threads to
loop around to the beginning, and then open the second.
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3.6.6 Reusable barrier solution

Listing 3.11: Reusable barrier solution

1 rendezvous

2
3 mutex.wait ()

4 count++

5 if (count == n)

6 turnstile2.wait () // lock the second

7 turnstile.signal () // unlock the first

8 mutex.signal ()

9
10 turnstile.wait () // first turnstile

11 turnstile.signal ()

12
13 critical point

14
15 mutex.wait ()

16 count--

17 if (count == 0)

18 turnstile.wait () // lock the first

19 signal (turnstile2) // unlock the second

20 mutex.signal ()

21
22 wait (turnstile2) // second turnstile

23 signal (turnstile2)

This example is, unfortunately, typical of many synchronization problems:
it is difficult to be sure that a solution is correct. Often there is a subtle way
that a particular path through the program can cause an error.
To make matters worse, testing an implementation of a solution is not much

help. The error might occur very rarely because the particular path that causes
it might require a spectacularly unlucky combination of circumstances. Such
errors are almost impossible to reproduce and debug by conventional means.
The only alternative is to examine the code carefully and “prove” that it is

correct. I put “prove” in quotation marks because I don’t mean, necessarily,
that you have to write a formal proof (although there are zealots who encourage
such lunacy).
The kind of proof I have in mind is more informal. We can take advantage

of the structure of the code, and the idioms we have developed, to assert, and
then demonstrate, a number of intermediate-level claims about the program.
For example:

1. Only the nth thread can lock or unlock the turnstiles.

2. Before a thread can unlock the first turnstile, it has to close the second,
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and vice versa; therefore it is impossible for one thread to get ahead of
the others by more than one turnstile.

By finding the right kinds of statements to assert and prove, you can some-
times find a concise way to convince yourself (or a skeptical colleague) that your
code is bulletproof.

3.6.7 Barrier objects

It is natural to encapsulate a barrier in an object. The instance variables are n,
count, turnstile and turnstile2.
Here is the code to initialize and use a Barrier object:

Listing 3.12: Barrier interface

1 Barrier barrier = 12 // initialize a new barrier

2 barrier.wait () // wait at a barrier

In this case the first 11 threads will block when they invoke wait. When the
12th thread arrives, all threads unblock. If the barrier object is implemented
using the code in Section 3.5.4, the barrier object will be reusable; that is,
after the first batch of 12 thread pass, the next batch has to wait until the 24th
thread arrives.

3.6.8 Kingmaker pattern

As threads pass a barrier, it is sometimes useful to assign identifiers to the
threads or to choose one of them to perform a special function. The counter
inside the barrier provides an obvious way to solve this problem.
All we need is the ability to store a value in each thread. For example, each

thread might have a variable named threadNum that records a different number
for each thread. This kind of variable is called a thread variable or a local

variable to distinguish it from the shared variables we have been using.
The following example assigns a different integer to each thread that passes.

Here are the variable declarations:

Listing 3.13: Kingmaker initialization

1 Semaphore mutex = 1

2 int count = 0

3 local int threadNum
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And here is the code:

Listing 3.14: Kingmaker code

1 mutex.wait ()

2 count++

3 threadNum = count

4 mutex.signal ()

Because count is a shared variable, any thread can increment it and all
threads see the changed value. On the other hand, when a thread assigns a
value to threadNum, only the local version of threadNum changes. The other
threads are unaffected.
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3.7 FIFO queue

If there is more than one thread waiting in queue when a semaphore is signalled,
there is usually no way to tell which thread will be woken. Some implemen-
tations wake threads up in a particular order, like first-in-first-out, but the
semantics of semaphores don’t require any particular order. As an alternative,
it might be useful to assign priorities to threads and wake them in order of
priority.
But even if your environment doesn’t provide first-in-first-out queueing, you

can build it yourself.
Puzzle: use an array of semaphores to build a first-in-first-out queue that

can hold up to n threads. Each time the semaphore sem is signalled, the thread
at the head of the queue should proceed. You should not make any assumption
about the implementation of your semaphores.
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3.7.1 FIFO queue hint

Here are the variables I used.

Listing 3.15: FIFO queue hint

1 local int i

2 Semaphore array[n+1] = { 0, 1, 1, ..., 1 }

3 Semaphore sem = 0

The local variable i is used by each thread to keep track of where it is in
queue. The array of semaphores controls the flow of threads through the queue.
Assume that the elements of the array are indexed from 1 to n+1. Initially, the
first semaphore is locked and all the rest are open. sem is the semaphore that
is signalled to waken the thread at the head of the queue.
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3.7.2 FIFO queue solution

Here is my solution:

Listing 3.16: FIFO queue solution

1 i = n

2 array[i+1].wait ()

3 while (i > 0) {

4 array[i].wait ()

5 array[i+1].signal ()

6 i--

7 }

When a first thread arrives, it gets the i+1 semaphore and then enters the
loop. To advance in the queue, the thread has to get the next semaphore, i. If
it succeeds, then it releases the previous semaphore, which allows a subsequent
thread to proceed. If it fails, it waits while holding the previous semaphore,
which blocks a subsequent thread.
The first thread to arrive will cascade down to array[1], which is initially

locked. When it blocks, it will hold array[2]. The next thread will block on
array[2] while holding array[3], and so on.
Eventually, some external thread will signal sem to allow a thread to exit

the queue. To make that work, we can use a helper thread running this loop:

Listing 3.17: FIFO queue solution (helper)

1 while (1) {

2 sem.wait ()

3 array[1].signal ()

4 }

So, each time sem is signalled, the helper thread signals array[1]. That
wakes up the first thread in queue, which will signal array[2] and then proceed.
The second thread in queue will advance one position, which allows each of the
following threads, in turn, to advance one position. At each step in the cascade,
we know that there is only one thread waiting on each semaphore, and that each
thread obtains the next semaphore before releasing the one it has. Therefore,
no thread can overtake another and the threads exit the queue in FIFO order.
That is, unless the queue is full. In that case, more than one thread can

be queued on array[n+1], and we have no control over which one enters the
queue next. So, to be precise, we can say that threads will leave the queue in
the order they pass array[n+1].
Naturally, we can encapsulate this solution in a object, called a Fifo, that

has the following syntax:

Listing 3.18: FIFO queue solution (helper)

1 Fifo fifo(n)

2 fifo.wait ()
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3 fifo.signal ()

The initializer creates a Fifo with n places in queue. wait and signal have
the same semantics as for semaphores, except that threads proceed in the order
they arrive, provided that there are no more than n in queue at a time.



Chapter 4

Classical synchronization

problems

In this chapter we examine the classical problems that appear in nearly every
operating systems class. They are usually presented in terms of real-world
problems, so that the statement of the problem is clear and so that students
can bring their intuition to bear.
For the most part, though, these problems do not happen in the real world, or

if they do, the real-world solutions are not much like the kind of synchronization
code we are working with.
The reason we are interested in these problems is that they are analogous

to common problems that operating systems (and some applications) need to
solve. For each classical problem I will present the classical formulation, and
also explain the analogy to the corresponding OS problem.

4.1 Producer-consumer problem

In multithreaded programs there is often a division of labor between threads. In
one common pattern, some threads are producers and some are consumers. Pro-
ducers create items of some kind and add them to a data structure; consumers
remove the items and process them.
Event-driven programs are a good example. An “event” is something that

happens that requires the program to respond: the user presses a key or moves
the mouse, a block of data arrives from the disk, a packet arrives from the
network, a pending operation completes.
Whenever an event occurs, a producer thread creates an event object and

adds it to the event buffer. Concurrently, consumer threads take events out
of the buffer and process them. In this case, the consumers are called “event
handlers.”
There are several synchronization constraints that we need to enforce to

make this system work correctly:



54 Classical synchronization problems

• While an item is being added to or removed from the buffer, the buffer is
in an inconsistent state. Therefore, threads must have exclusive access to
the buffer.

• If a consumer thread arrives while the buffer is empty, it blocks until a
producer adds a new item.

Assume that producers perform the following operations over and over:

Listing 4.1: Basic producer code

1 event = waitForEvent ()

2 addEventToBuffer (event)

Also, assume that consumers perform the following operations:

Listing 4.2: Basic consumer code

1 event = getEventFromBuffer ()

2 processEvent (event)

As specified above, access to the buffer has to be exclusive, but
waitForEvent and processEvent can run concurrently.
Puzzle: Add synchronization statements to the producer and consumer code

to enforce the synchronization constraints.
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4.1.1 Producer-consumer hint

Here are the variables you might want to use:

Listing 4.3: Producer-consumer initialization

1 Semaphore mutex = 1

2 Semaphore length = 0

3 local Event event

Not surprisingly, mutex provides exclusive access to the buffer. When length
is positive, it indicates the number of items in the buffer. When it is negative,
it indicates the number of consumer threads in queue.

event is a local variable (each thread has its own variable with this name).
Let’s assume that capital-E Event is some type of object.
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4.1.2 Producer-consumer solution

Here is the producer code from my solution.

Listing 4.4: Producer solution

1 event = waitForEvent ()

2 mutex.wait ()

3 addEventToBuffer (event)

4 length.signal ()

5 mutex.signal ()

The producer doesn’t have to get exclusive access to the buffer until it gets
an event. Several threads can run waitForEvent concurrently.
The length semaphore keeps track of the number of items in the buffer.

Each time the producer adds an item, it signals length, incrementing it by one.
The consumer code is similar.

Listing 4.5: Consumer solution

1 length.wait ()

2 mutex.wait ()

3 event = getEventFromBuffer ()

4 mutex.signal ()

5 processEvent (event)

Again, the buffer operation is protected by a mutex, but before the con-
sumer gets to it, it has to decrement length. If length is zero or negative, the
consumer blocks until a producer signals.
Although this solution is correct, there is an opportunity to make one small

improvement to its performance. Imagine that there is at least one consumer
in queue when a producer signals length. If the scheduler allows the consumer
to run, what happens next? It immediately blocks on the mutex that is (still)
held by the producer.
Blocking and waking up are moderately expensive operations; performing

them unnecessarily can impair the performance of a program. So it would
probably be better to rearrange the producer like this:

Listing 4.6: Improved producer solution

1 event = waitForEvent ()

2 mutex.wait ()

3 addEventToBuffer (event)

4 mutex.signal ()

5 length.signal ()

Now we don’t bother unblocking a consumer until we know it can proceed
(except in the rare case that another producer beats it to the mutex).
There’s one other thing about this solution that might bother a stickler. In

the hint section I claimed that the length semaphore keeps track of the number
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of items in queue. But looking at the consumer code, we see the possibility that
several consumers could decrement length before any of them gets the mutex
and removes an item from the buffer. At least for a little while, length would
be inaccurate.
We might try to address that by checking the buffer inside the mutex:

Listing 4.7: Broken consumer solution

1 mutex.wait ()

2 length.wait ()

3 event = getEventFromBuffer ()

4 mutex.signal ()

5 processEvent (event)

This is a bad idea.
Puzzle: why?
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4.1.3 Deadlock #4

If the consumer is running this code

Listing 4.8: Broken consumer solution

1 mutex.wait ()

2 length.wait ()

3 event = getEventFromBuffer ()

4 mutex.signal ()

5
6 processEvent (event)

it can cause a deadlock. Imagine that the buffer is empty. A consumer arrives,
gets the mutex, and then blocks on length. When the producer arrives, it
blocks on mutex and the system comes to a griding halt.
This is a common error in synchronization code: any time you wait for a

semaphore while holding a mutex, there is a danger of deadlock. When you are
checking a solution to a synchronization problem, you should check for this kind
of deadlock.

4.1.4 Producer-consumer with a finite buffer

In the example I described above, event-handling threads, the shared buffer is
usually infinite (more accurately, it is bounded by system resources like physical
memory and swap space).
In the kernel of the operating system, though, there are limits on available

space. Buffers for things like disk requests and network packets are usually fixed
size. In situations like these, we have an additional synchronization constraint:

• If a producer arrives when the buffer is full, it blocks until a consumer
removes an item.

Assume that we know the size of the buffer. Call it bufferSize. Since we
have a semaphore that is keeping track of the number of items, it is tempting
to write something like

Listing 4.9: Broken finite buffer solution

1 if (length >= bufferSize)

2 block ()

But we can’t. Remember that we can’t check the current value of a
semaphore; the only operations are wait and signal.
Puzzle: write producer-consumer code that handles the finite-buffer con-

straint.



60 Classical synchronization problems



4.1 Producer-consumer problem 61

4.1.5 Finite buffer producer-consumer hint

Add a second semaphore to keep track of the number of available spaces in the
buffer.

Listing 4.10: Finite-buffer producer-consumer initialization

1 Semaphore mutex = 1

2 Semaphore length = 0

3 Semaphore spaces = bufferSize

When a consumer removes an item it should signal spaces. When a producer
arrives it should decrement spaces, at which point it might block until the next
consumer signals.
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4.1.6 Finite buffer producer-consumer solution

Here is a solution.

Listing 4.11: Finite buffer consumer solution

1 length.wait ()

2 mutex.wait ()

3 event = getEventFromBuffer ()

4 mutex.signal ()

5 spaces.signal ()

6
7 processEvent (event)

The producer code is symmetric, in a way:

Listing 4.12: Finite buffer producer solution

1 event = waitForEvent ()

2
3 spaces.wait()

4 mutex.wait ()

5 addEventToBuffer (event)

6 mutex.signal ()

7 length.signal ()

In order to avoid deadlock, producers and consumers check availability be-
fore getting the mutex. For best performance, they release the mutex before
signalling.

4.2 Readers-writers problem

The next classical problem, called the Reader-Writer Problem, pertains to any
situation where a data structure, database, or file system is read and modified
by concurrent threads. While the data structure is being written or modified
it is often necessary to bar other threads from reading, in order to prevent a
reader from interrupting a modification in progress and reading inconsistent or
invalid data.
As in the producer-consumer problem, the solution is asymmetric. Readers

and writers execute different code before entering the critical section. The basic
synchronization constraints are:

1. Any number of readers can be in the critical section simultaneously.

2. Writers must have exclusive access to the critical section.

In other words, a writer cannot enter the critical section while any other
thread (reader or writer) is there, and while the writer is there, no other thread
may enter.
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Puzzle: Use semaphores to enforce these constraints, while allowing readers
and writers to access the data structure, and avoiding the possibility of deadlock.
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4.2.1 Readers-writers hint

Here is a set of variables that is sufficient to solve the problem.

Listing 4.13: Readers-writers initialization

1 int readers = 0;

2 Semaphore mutex = 1;

3 Semaphore roomEmpty = 1;

The counter readers keeps track of how many readers are in the room.
mutex protects the shared counter. roomEmpty is 1 if there are no threads
(readers or writers) in the critical section, and 0 otherwise.
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4.2.2 Readers-writers solution

The code for writers is simple. If the critical section is empty, a writer may
enter, but entering has the effect of excluding all other threads:

Listing 4.14: Writers solution

1 roomEmpty.wait ()

2 critical section for writers

3 roomEmpty.signal ()

When the writer exits, can it be sure that the room is now empty? Yes,
because it knows that no other thread can have entered while it was there.
The code for readers is similar to the barrier code we saw in the previous

section. We keep track of the number of readers in the room so that we can
give a special assignment to the first to arrive and the last to leave.
The first reader that arrives has to wait for roomEmpty. If the room is empty,

then the reader proceeds and, at the same time, bars writers. Subsequent readers
can still enter because none of them will try to wait on roomEmpty.
If a reader arrives while there is a writer in the room, it waits on roomEmpty.

Since it holds the mutex, any subsequent readers queue on mutex.

Listing 4.15: Readers solution

1 mutex.wait ()

2 readers++

3 if (readers == 1)

4 roomEmpty.wait () // first in locks

5 mutex.signal ()

6
7 critical section for readers

8
9 mutex.wait ()

10 readers--

11 if (readers == 0)

12 roomEmpty.signal () // last out unlocks

13 mutex.signal ()

The code after the critical section is similar. The last reader to leave the
room turns out the lights—that is, it signals roomEmpty, possibly allowing a
waiting writer to enter.
Again, to demonstrate that this code is correct, it is useful to assert and

demonstrate a number of claims about how the program must behave. Can you
convince yourself that the following are true?

• Only one reader can queue waiting for roomEmpty, but several writers
might be queued.

• When a reader signals roomEmpty the room must be empty.
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Patterns similar to this reader code are common: the first thread into a
section locks a semaphore (or queues) and the last one out unlocks it. In fact,
it is so common we should give it a name and wrap it up in an object.
The name of the pattern is “Film Louie,” which stands for “first in locks

mutex, last out unlocks it, eh?” For convenience, we’ll call the pattern a Louie
and exapsulate it in an object, Louie, with the following instance variable:

Listing 4.16: Louie definition

1 int counter

2 Semaphore mutex

The methods that operate on Louies are lock and unlock.

Listing 4.17: Louie lock definition

1 function lock (semaphore)

2 wait (mutex)

3 counter++

4 if (counter = 1)

5 wait (semaphore)

6 signal (mutex)

lock takes one parameter, a semaphore that it will check and possibly hold.
It performs the following operations:

• If the semaphore is locked, then the calling thread and all subsequent
callers will block.

• When the semaphore is signalled, all waiting threads and all subsequent
callers can proceed.

• While the filo is locked, the semaphore is locked.

Inside the definition of lock, the references to mutex and counter refer to
the instance variables of the current object, the Louie the method was invoked
on.
Here is the code for unlock:

Listing 4.18: Louie unlock definition

1 function filoUnlock (semaphore)

2 wait (mutex)

3 counter--

4 if (counter = 0)

5 signal (semaphore)

6 signal (mutex)

unlock has the following behavior:
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• This function does nothing until every thread that called lock also calls
unlock.

• When the last thread calls unlock, it unlocks the semaphore.

Using these functions, we can rewrite the reader code more simply:

Listing 4.19: Concise reader solution

1 readLouie.lock (roomEmpty)

2 critical section for readers

3 readLouie.unlock (roomEmpty)

readLouie is a shared Louie object whose counter is initially zero.

4.2.3 Starvation

In the previous solution, is there any danger of deadlock? In order for a deadlock
to occur, it must be possible for a thread to wait on a semaphore while holding
another, and thereby prevent itself from being signalled.
In this example, deadlock is not possible, but there is a related problem that

is almost as bad: it is possible for a writer to starve.
If a writer arrives while there are readers in the critical section, it might wait

in queue forever while readers come and go. As long as a new reader arrives
before the last of the current readers exits, there will always be at least one
reader in the room.
This situation is not a deadlock, because some threads are making progress,

but it is not exactly desireable. A program like this might work as long as the
load on the system is low, because then there are plenty of opportunities for the
writers. But as the load increases the behavior of the system would deteriorate
quickly (at least from the point of view of writers).
Puzzle: Extend this solution so that when a writer arrives, the existing

readers can finish, but no additional readers may enter.
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4.2.4 No-starve readers-writers hint

Here’s a hint. You can add a turnstile for the readers and allow writers to lock it.
The writers have to pass through the same turnstile, but they should check the
roomEmpty semaphore while they are inside the turnstile. If a writer gets stuck
in the turnstile it has the effect of forcing the readers to queue at the turnstile.
Then when the last reader leaves the critical section, we are guaranteed that at
least one writer enters next (before any of the queued readers can proceed).

Listing 4.20: No-starve readers-writers initialization

1 Louie readers = 0

2 Semaphore roomEmpty = 1

3 Semaphore turnstile = 1

readers keeps track of how many readers are in the room; the Louie locks
roomEmpty when the first reader enters and unlocks it when the last reader
leaves.

turnstile is a turnstile for readers and a mutex for writers.
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4.2.5 No-starve readers-writers solution

Here is the writer code:

Listing 4.21: No-starve writer solution

1 turnstile.wait ()

2
3 roomEmpty.wait ()

4
5 critical section for writers

6
7 turnstile.signal ()

8
9 roomEmpty.signal ()

If a writer arrives while there are readers in the room, it will block at Line 3,
which means that the turnstile will be locked. This will bar readers from entering
while a writer is queued. Here is the reader code:

Listing 4.22: No-starve reader solution

1 turnstile.wait ()

2 turnstile.signal ()

3
4 filo.lock (roomEmpty)

5 critical section for readers

6 filo.unlock (roomEmpty)

When the last reader leaves, it signals roomEmpty, unblocking the waiting
writer. The writer immediately enters its critical section, since none of the
waiting readers can pass the turnstile.
When the writer exits it signals turnstile, which unblocks a waiting thread,

which could be a reader or a writer. Thus, this solution guarantees that at least
one writer gets to proceed, but it is still possible for a reader to enter while
there are writers queued.
Depending on the application, it might be a good idea to give more priority

to writers. For example, if writers are making time-critical updates to a data
structure, it is best to minimize the number of readers that see the old data
before the writer has a chance to proceed.
In general, though, it is up to the scheduler, not the programmer, to choose

which waiting thread to unblock. Some schedulers use a first-in-first-out queue,
which means that threads are unblocked in the same order they queued. Other
schedulers choose at random, or according to a priority scheme based on the
properties of the waiting threads.
If your programming environment makes it possible to give some threads

priority over others, then that is a simple way to address this issue. If not, you
will have to find another way.
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Puzzle: Write a solution to the readers-writers problem that gives priority
to writers. That is, once a writer arrives, no readers should be allowed to enter
until all writers have left the system.
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4.2.6 Writer-priority readers-writers hint

As usual, the hint is in the form of variables used in the solution.

Listing 4.23: Writer-priority readers-writers initialization

1 Louie readLouie, writeLouie

2 Semaphore mutex

3 Semaphore noReaders = 1

4 Semaphore noWriters = 1
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4.2.7 Writer-priority readers-writers solution

Here is the reader code:

Listing 4.24: Writer-priority reader solution

1 noReaders.wait()

2 readLouie.lock (noWriters)

3 noReaders.signal ()

4
5 critical section for readers

6 readLouie.unlock (noWriters)

If a reader is in the critical section, it holds noWriters, but it doesn’t hold
noReaders. Thus if a writer arrives it can lock noReaders, which will cause
subsequent readers to queue.
When the last reader exits, it signals noWriters, allowing any queued writers

to proceed.
The writer code:

Listing 4.25: Writer-priority writer solution

1 writeLouie.lock (noReaders)

2 noWriters.wait ()

3 critical section for writers

4 noWriters.signal ()

5 writeLouie.unlock (noReaders)

When a writer is in the critical section it holds both noReaders and
noWriters. This has the (relatively obvious) effect of insuring that there are no
readers and no other writers in the critical section. In addition, writeLouie has
the (less obvious) effect of allowing multiple writers to queue on noWriters, but
keeping noReaders locked while they are there. Thus, many writers can pass
through the critical section without without ever signalling noReaders. Only
when the last writer exits can the readers enter.
Of course, a drawback of this solution is that now it is possible for readers

to starve (or at least face long delays). For some applications it might be better
to get obsolete data with predictable turnaround times.
Also, this solution does not quite satisfy all the requirements. While there

is a writer in the critical section, it is possible for multiple readers to queue
on noReaders. If a writer arrives, it will queue on noReaders along with the
waiting readers. When the first writer leaves the critical section, the scheduler
might allow the waiting readers to go ahead of the writer.
Again, depending on the application, that possibility might be tolerable. If

not, we can improve the situation by adding a mutex to the reader code:
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Listing 4.26: Writer-priority improved reader solution

1 mutex.wait ()

2 noReaders.wait()

3 readLouie.lock (noWriters)

4 noReaders.signal ()

5 mutex.signal ()

6
7 critical section for readers

8 readLouie.unlock (noWriters)

Now there can be at most one reader queued on noReaders. If a writer
arrives, it will have to wait for any readers in the critical section, and it might
have to wait for the queued reader, but that’s all.
You might want to keep this trick in mind. To limit the number of threads

in a certain queue, surround it with a mutex or a multiplex.
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4.3 No-starve mutex

In the previous section, we addressed what I’ll call categorical starvation,
in which one category of threads (readers) allows another category (writers) to
starve. At a more basic level, we have to address the issue of thread starvation,
which is the possibility that one thread might wait indefinitely while others
proceed.
For most concurrent applications, starvation is unacceptable, so we enforce

the requirement of bounded waiting, which means that the time a thread
waits on a semaphore (or anywhere else, for that matter) has to be provably
finite.
In part, starvation is the responsibility of the scheduler. Whenever multiple

threads are ready to run, the scheduler decides which one or, on a parallel
processor, which set of threads gets to run. If a thread is never scheduled, then
it will starve, no matter what we do with semaphores.
So in order to say anything about starvation, we have to start with some

assumptions about the scheduler. If we are willing to make a strong assumption,
we can assume that the scheduler uses one of the many algorithms that can
be proven to enforce bounded waiting. If we don’t know what algorithm the
scheduler uses, then we can get by with a weaker assumption:

Property 1: if there is only one thread that is ready to run, the
scheduler has to let it run.

If we can assume Property 1, then we can build a system that is provably
free of starvation. For example, if there are a finite number of threads, then any
program that contains a barrier cannot starve, since eventually all threads but
one will be waiting at the barrier, at which point the last thread has to run.
In general, though, it is non-trivial to write programs that are free from

starvation unless with make the stronger assumption:

Property 2: if a thread is ready to run, then the time it waits until
it runs is bounded.

In our discussion so far, we have been assuming Property 2 implicitly, and
we will continue to. On the other hand, you should know that many existing
systems use schedulers that do not guarantee this property strictly.
Even with Property 2, starvation rears its ugly head again when we introduce

semaphores. In the definition of a semaphore, we said that when one thread
executes signal, one of the waiting threads gets woken up. But we never said
which one. Again, in order to say anything about starvation, we have to make
assumptions about the behavior of semaphores.
The weakest assumption that makes it possible to avoid starvation is:

Property 3: if there are threads waiting on a semaphore when a
thread executes signal, then one of the waiting threads has to be
woken.
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This requirement may seem obvious, but it is not trivial. It has the effect
of barring one form of problematic behavior, which is a thread that signals a
semaphore while other threads are waiting, and then keeps running, waits on
the same semaphore, and gets its own signal! If that were possible, that there
would be nothing we could do to prevent starvation.
With Property 3, it becomes possible to avoid starvation, but even for some-

time as simple as a mutex, it is not easy. For example, imagine three threads
running the following code:

Listing 4.27: Mutex loop

1 while (1) {

2 mutex.wait ()

3 critical section

4 mutex.signal ()

5 }

The while statement is an infinite loop; in other words, as soon as a thread
leaves the critical section, it loops to the top and tries to get the mutex again.
Imagine that Thread A gets the mutex and Thread B and C wait. When A

leaves, B enters, but before B leaves, A loops around and joins C in the queue.
When B leaves, there is no guarantee that C goes next. In fact, if A goes next,
and B joins the queue, then we are back to the starting position, and we can
repeat the cycle forever. C starves.
The existence of this pattern proves that the mutex is vulnerable to star-

vation. One solution to this problem is to change the implementation of the
semaphore so that it guarantees a stronger property:

Property 4: if a thread is waiting at a semaphore, then the number
of threads that will be woken before it is bounded.

For example, if the semaphore maintains a first-in-first-out queue, then Prop-
erty 4 holds because when a thread joins the queue, the number of threads ahead
of it is finite, and no threads that arrive later can go ahead of it.
A semaphore that has Property 4 is sometimes called a strong semaphore;

one that has only Property 3 is called a weak semaphore. We have shown that
with weak semaphors, the simple mutex solution is vulnerable to starvation. In
fact, Dijkstra conjectured that it is not possible to solve the mutex problem
without starvation using only weak semaphores.
In 1979, J.M. Morris refuted the conjecture by solving the problem, assuming

that the number of threads is finite [4]. If you are interested in this problem,
the next section presents his solution. If this is not your idea of fun, you can
just assume that semaphores have Property 4 and go on to Section 4.4.
Puzzle: write a solution to the mutual exclusion problem using weak

semaphores. Your solution should provide the following guarantee: once a
thread arrives and attempts to enter the mutex, there is a bound on the number
of threads that can proceed ahead of it.
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4.3.1 No-starve mutex hint

Morris’s solution is similar to the reusable barrier in Section 3.6. It uses two
turnstiles to create two waiting rooms before the critical section. The mechanism
works in two phases. During the first phase, the first turnstile is open and the
second is closed, so threads accumulate in the second room. During the second
phase, the first turnstile is closed, so no new threads can enter, and the second
is open, so the existing threads can get to the critical section.
Although there may be an arbitrary number of threads in the waiting room,

each one is guaranteed to enter the critical section before any future arrivals.
Here are the variables I used in the solution (I changed the names Morris

uses to make the structure clearer).

Listing 4.28: No-starve mutex hint

1 int room1, room2

2 Semaphore mutex

3 Semaphore t1 = 1

4 Semaphore t2 = 0

room1 and room2 keep track of how many threads are in the waiting rooms.
mutex helps protect the counters. t1 and t2 are the turnstiles.
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4.3.2 No-starve mutex solution

Here is Morris’s solution.

Listing 4.29: Morris’s algorithm

1 mutex.wait ()

2 room1++

3 mutex.signal ()

4
5 t1.wait ()

6 room2++

7 mutex.wait ()

8 room1--

9
10 if (room1 == 0)

11 mutex.signal ()

12 t2.signal ()

13 else

14 mutex.signal ()

15 t1.signal ()

16
17 t2.wait ()

18 room2--

19
20 // critical section

21
22 if (room2 == 0)

23 t1.signal ()

24 else

25 t2.signal ()

Before entering the critical section, a thread has to pass two turnstiles. These
turnstiles divide the code into three “rooms”. Room 1 is Lines 1–5. Room 2 is
lines 6–17. Room 3 is the rest. Speaking loosely, the counters room1 and room2
keep track of the number of threads in each room.
The counter room1 is protected by mutex in the usual way, but guard duty

for room2 is split between t1 and t2. Similarly, responsibility for exclusive
access to the critical section involves both t1 and t2. In order to enter the
critical section, a thread has to hold one or the other, but not both. Then,
before exiting, it gives up whichever one it has.
To understand how this solution works, start by following a single thread all

the way through. When it gets to Line 10, it holds mutex and t1. Once it checks
room1, which is 0, it can release mutex and then open the second turnstile, t2.
As a result, it doesn’t wait at Line 17 and it can safely decrement room2 and
enter the critical section, because any following threads have to be queued on
t1. Leaving the critical section, it finds room2 = 0 and releases t1, which brings
us back to the starting state.
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Of course, the situation is more interesting if there is more than one thread.
In that case, it is possible that when the lead thread gets to Line 10, other
threads have entered the waiting room and queued on t1. Since room1 > 0, the
lead thread leaves t2 locked and instead signals t1 to allow a following thread
to enter Room 2. Since t2 is still locked, neither thread can enter Room 3.
Eventually (because there are a finite number of threads), a thread will get

to Line 10 before another threads enters Room 1, in which case it will open t2,
allowing any threads there to move into Room 3. The thread that opens t2
continues to hold t1, so if any of the lead threads loop around, they will block
at Line 5.
As each thread leaves Room 3, it signals t2, allowing another thread to leave

Room 2. When the last thread leaves Room 2, it leaves t2 locked and opens
t1, which brings us back to the starting state.
To see how this solution avoids starvation, it helps to think of its operation in

two phases. In the first phase, threads check into Room 1, increment room1, and
then cascade into Room 2 one at a time. The only way to keep a thread from
proceeding is to maintain a procession of threads through Room 1. Because
there are a finite number of threads, the procession has to end eventually, at
which point the first turnstile locks and the second opens.
In the second phase, threads cascade into Room 3. Because there are a finite

number of threads in Room 2, and no new threads can enter, eventually the last
thread leaves, at which point the second turnstile locks and the first opens.
At the end of the first phase, we know that there are no threads waiting

at t1, because room1 = 0. And at the end of the second phase, we know that
there are no threads waiting at t2 because room2 = 0.
With a finite number of threads, starvation is only possible if one thread

can loop around and overtake another. But the two-turnstile mechanism makes
that impossible, so starvation is impossible.
The moral of this story is that with weak semaphores, it is very difficult to

prevent starvation, even for the simplest synchonization problems. In the rest
of this book, when we discuss starvation, we will assume strong semaphores.
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4.4 Dining philosophers

The Dining Philosophers Problem was proposed by Dijkstra in 1965, when di-
nosaurs ruled the earth [2]. It appears in a number of variations, but the stan-
dard features are a table with five plates, five forks (or chopsticks) and a big
bowl of spaghetti. Five philosophers, who represent interacting threads, come
to the table and execute the following loop:

Listing 4.30: Basic philosopher loop

1 while (1) {

2 think ()

3 get_forks ()

4 eat ()

5 put_forks ()

6 }

The forks represent resources that the threads have to hold exclusively in
order to make progress. The thing that makes the problem interesting, unreal-
istic, and unsanitary, is that the philosophers need two forks to eat, so a hungry
philosopher might have to wait for a neighbor to put down a fork.
Assume that the philosophers have a local variable i that identifies each

philosopher with a value in (0..4). Similarly, the forks are numbered from 0 to
4, so that Philosopher i has fork i on the right and fork (i+1)mod5 on the left.
Here is a diagram of the situation:
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0 1
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Assuming that the philosophers know how to think and eat, our job is to
write a version of get forks and put forks that satisfies the following con-
straints:

• Only one philosopher can hold a fork at a time.

• It must be impossible for a deadlock to occur.

• It must be impossible for a philosopher to starve waiting for a fork.

• It must be possible for more than one philosopher to eat at the same time.
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The last requirement is one way of saying that the solution should be efficient;
that is, it should allow the maximum amount of concurrency.
We make no assumption about how long eat and think take, except that

eat has to terminate eventually. Otherwise, the third constraint is impossible—
if a philosopher keeps one of the forks forever, nothing can prevent the neighbors
from starving.
To make it easy for philosophers to refer to their forks, we can use the

functions left and right:

Listing 4.31: Which fork?

1 int left (i) { return i }

2 int right (i) { return (i + 1) mod 5 }

The mod operator wraps around when it gets to 5, so that 4 + 1 = 0.
Since we have to enforce exclusive access to the forks, it is natural to use an

array of Semaphores, one for each fork. Initially, all the forks are available.

Listing 4.32: Variables for dining philosophers

1 Semaphore fork[5] = {1, 1, 1, 1, 1}

Here is an initial attempt at get fork and put fork:

Listing 4.33: Dining philosophers non-solution

1 get_fork (i) {

2 fork[right(i)].wait()

3 fork[left(i)].wait()

4 }

5
6 put_fork (i) {

7 fork[right(i)].signal()

8 fork[left(i)].signal()

9 }

It’s clear that this solution satisfies the first constraint, but we can be pretty
sure it doesn’t satisfy the other two, because if it did, this wouldn’t be an
interesting problem and you would be reading Chapter 5.
Puzzle: what’s wrong?
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4.4.1 Deadlock #5

The problem is that the table is round. As a result, each philosopher can pick
up a fork and then wait forever for the other fork. Deadlock!
Puzzle: write a solution to this problem that prevents deadlock.
Hint: one way to avoid deadlock is to think about the conditions that make

deadlock possible and then change one of those conditions. In this case, the
deadlock is fairly fragile—a very small change breaks it.
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4.4.2 Dining philosophers hint #1

If only four philosophers are allowed at the time at a time, deadlock is impos-
sible.
First, convince yourself that this claim is true, then write code that limits

the number of philosophers at the table.
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4.4.3 Dining philosophers solution #1

If there are only four philosophers at the table, then in the worst case each one
picks up a fork. Even then, there is a fork left on the table, and that fork has
two neighbors, each of which is holding another fork. Therefore, either of these
neighbors can pick up the remaining fork and eat.
We can control the number of philosophers at the table with a Multiplex

named footman that is initialized to 4. Then the solution looks like this:

Listing 4.34: Dining philosophers solution #1

1 get_fork (i) {

2 footman.wait ()

3 fork[right(i)].wait()

4 fork[left(i)].wait()

5 }

6
7 put_fork (i) {

8 fork[right(i)].signal()

9 fork[left(i)].signal()

10 footman.signal ()

11 }

Can we prove that this solution prevents starvation? Imagine that you are
sitting at the table and both of your neighbors are eating. You are blocked
waiting for your right fork. Eventually your right neighbor will put it down,
because eat can’t run forever. Since you are the only thread waiting for that
fork, you will necessarily get it next. By a similar argument, you cannot starve
waiting for your left fork.
Therefore, the time a philosopher can spend at the table is bounded. That

implies that the wait time to get into the room is also bounded, as long as
footman has Property 4 (see Section 4.3).
This solution shows that by controlling the number of philosophers, we can

avoid deadlock. Another way to avoid deadlock is to change the order in which
the philosophers pick up forks. In the original non-solution, the philosophers
are “righties”; that is, they pick up the right fork first. But what happens if
Philosopher 0 is a leftie?
Puzzle: prove that if at least one Philosopher is a leftie, then deadlock is not

possible.
Hint: deadlock can only occur when all 5 philosophers are holding one fork

and waiting, forever, for the other. Otherwise, one of them could get both forks,
eat, and leave.
The proof works by contradiction. First, assume that deadlock is possible.

Then choose one of the supposedly deadlocked philosophers. If she’s a leftie,
you can prove that the philosophers are all lefties, which is a contradiction.
Similarly, if she’s a rightie, can prove that they are all righties. Either way you
get a contradiction; therefore, deadlock is not possible.
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4.4.4 Dining philosopher’s solution #2

In the asymmetric solution to the Dining philosophers problem, there has to be
at least one leftie and at least one rightie at the table. In that case, deadlock is
impossible. The previous hint outlines the proof. Here are the details.
Again, if deadlock is possible, it occurs when all 5 philosophers are holding

one fork and waiting for the other. If we assume that Philosopher j is a leftie,
then she must be holding her left fork and waiting for her right. Therefore
her neighbor to the right, Philosopher k, must be holding his left fork and
waiting for his right neighbor; in other words, Philosopher k must be a leftie.
Repeating the same argument, we can prove that the philosophers are all lefties,
which contradicts the original claim that there is at least one rightie. Therefore
deadlock is not possible.
The same argument we used for the previous solution also proves that star-

vation is impossible for this solution.
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4.4.5 Tanenbaum’s solution

There is nothing wrong with the previous solutions, but just for completeness,
let’s look at some alternatives. One of the best known is the one that appears
in Tanenbaum’s popular operating systems textbooks [9]. For each philosopher
there is a state variable that indicates whether the philosopher is thinking,
eating, or waiting to eat (“hungry”) and a semaphore that indicates whether
the philosopher can start eating. Here are the variables:

Listing 4.35: Variables for Tanenbaum’s solution

1 int state[5]

2 Semaphore sem[5]

3 Semaphore mutex = 1

The state array is initialized to “thinking,” and the semaphore array is
initialized to 0. Here is the code:

Listing 4.36: Tanenbaum’s solution

1 get_fork (i) {

2 mutex.wait ()

3 state[i] = hungry

4 test (i)

5 mutex.signal ()

6 sem[i].wait ()

7 }

8
9 put_fork (i) {

10 mutex.wait ()

11 state[i] = thinking

12 test (right (i))

13 test (left (i))

14 mutex.signal ()

15 }

16
17 test (i) {

18 if (state[i] == hungry &&

19 state (left (i)) != eating &&

20 state (right (i)) != eating)

21 state[i] = eating

22 sem[i].signal ()

23 }

The test function checks whether the ith philosopher can start eating, which
he can if he is hungry and neither of his neighbors are eating. If so, the test
signals semaphore i.
There are two ways a philosopher gets to eat. In the first case, the philoso-

pher executes get forks, finds the forks available, and proceeds immediately.
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In the second case, one of the neighbors is eating and the philosopher blocks
on its own semaphore. Eventually, one of the neighbors will finish, at which
point it executes test on both of its neighbors. It is possible that both tests
will succeed, in which case the neighbors can run concurrently. The order of the
two tests doesn’t matter.
In order to access the state array, or invoke test, a thread has to hold

mutex. Thus, the operation of checking and updating the array is atomic. Since
a philosopher can only proceed when we know both forks are available, exclusive
access to the forks is guaranteed.
No deadlock is possible, because the only semaphore that is accessed by

more than one philosopher is mutex, and no thread executes wait while holding
mutex.
But again, starvation is tricky.
Puzzle: Either convince yourself that Tanenbaum’s solution prevents star-

vation or find a repeating pattern that allows a thread to starve while other
threads make progress.
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4.4.6 Starving Tanenbaums

Unfortunately, this solution is not starvation-free. Gingras demonstrated that
there are repeating patterns that allow a thread to wait forever while other
threads come and go [3].
Imagine that we are trying to starve Philosopher 0. Initially, 2 and 4 are at

the table and 1 and 3 are hungry. If 4 gets up first, then only 0 can proceed, so
we’ll have 2 get up and 1 sit down. Since Philosopher 1 holds fork 1, it is now
“safe” to let 4 get up and 3 sit down.
Now we are in the mirror image of the starting position. Again, if 1 got up

first, 0 could eat, so instead 3 gets up and 4 sits down. Finally, 1 gets up and
2 sits down, which brings us back where we started. We could repeat the cycle
indefinitely and Philosopher 1 would starve.
So, Tanenbaum’s solution doesn’t satisfy all the requirements.
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4.5 Cigarette smokers’ problem

The cigarette smokers’ problem problem was originally presented by Suhas Patil
[6], who claimed that it cannot be solved with semaphores. That claim comes
with some qualifications, but in any case the problem is interesting and chal-
lenging.
Four threads are involved: an agent and three smokers. The smokers loop

forever, first waiting for ingredients, then making and smoking cigarettes. The
ingredients are tobacco, paper, and matches.
We assume that the agent has an infinite supply of all three ingredients, and

each smoker has an infinite supply of one of the ingredients; that is, one smoker
has matches, another has paper, and the third has tobacco.
The agent repeatedly chooses two different ingredients at random and makes

them available to the smokers. Depending on which ingredients are chosen, the
smoker with the complementary ingredient should pick up both resources and
proceed.
For example, if the agent puts out tobacco and paper, the smoker with the

matches should pick up both ingredients, make a cigarette, and then signal the
agent.
Based on this premise, there are three versions of this problem that often

appear in textbooks:

The impossible version: Patil’s version imposes several artificial restrictions
on the solution. First, the code for the agent and a set of accompany-
ing semaphores is given as an unmodifiable part of the problem. Second,
the solution is not allowed to use conditional statements or an array of
semaphores. With these constraints, the problem cannot be solved. In a
followup article, Parnas points out that these restrictions are uncomfort-
ably artificial [5]. With constraints like these, a lot of problems become
unsolvable.

The interesting version: This version imposes no additional constraints
other than the usual goals: all threads should make progress (no star-
vation) and no threads should busy-wait (check for a condition over and
over).

The trivial version: In some textbooks, the problem specifies that the agent
should signal the smoker that should go next, according to the ingredients
that are available. This version of the problem is uninteresting because
it makes the whole premise, the ingredients and the cigarettes, irrelevant.
Also, as a practical matter, it is probably not a good idea to require the
agent to know about the other threads and what they are waiting for.
Finally, this version of the problem is just too easy.

Naturally, we will focus on the interesting version. To complete the state-
ment of the problem, we need to specify the agent code. The agent uses the
following semaphores:
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Listing 4.37: Agent semaphores

1 Semaphore agentSem = 1

2 Semaphore tobacco = 0

3 Semaphore paper = 0

4 Semaphore match = 0

After putting out two ingredients, the agent waits for agentSem before con-
tinuing. The other three semaphores indicate which ingredients are available.
The agent is actually made up of three concurrent threads, Agent A, Agent

B and Agent C. Each provides different ingredients.

Listing 4.38: Agent A code

1 agentSem.wait ()

2 tobacco.signal ()

3 paper.signal ()

Listing 4.39: Agent B code

1 agentSem.wait ()

2 paper.signal ()

3 match.signal ()

Listing 4.40: Agent C code

1 agentSem.wait ()

2 tobacco.signal ()

3 match.signal ()

Initally the three agent threads compete for agentSem. Whichever gets it
determines the first pair of ingredients. Subsequently, each time agentSem is
signalled, a “random” agent thread proceeds. Of course, the behavior of the
system is not really random; it depends on the decisions of the local scheduler
(which thread runs when) and the queueing policy of the semaphore.
This problem is hard because the natural solution does not work. It is

tempting to write something like:

Listing 4.41: Smoker with matches

1 tobacco.wait ()

2 paper.wait ()

3 agentSem.signal ()

Listing 4.42: Smoker with tobacco

1 paper.wait ()

2 match.wait ()

3 agentSem.signal ()
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Listing 4.43: Smoker with paper

1 tobacco.wait ()

2 match.wait ()

3 agentSem.signal ()

What’s wrong with this solution?
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4.5.1 Deadlock #6

The problem with the previous solution is the possibility of deadlock. Imagine
that the agent puts out tobacco and paper. Since the smoker with matches is
waiting on tobacco, it might be unblocked. But the smoker with tobacco is
waiting on paper, so it is possible (even likely) that it will also be unblocked.
Then the first thread will block on paper and the second will block on match.
Deadlock!
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4.5.2 Smoker problem hint

The solution proposed by Parnas uses three helper threads called “pushers” that
respond to the signals from the agent, keep track of the available ingredients,
and signal the appropriate smoker.
The additional variables and semaphores are

Listing 4.44: Smoker problem hint

1 boolean isTobacco, isPaper, isMatch

2 Semaphore tobaccoSem = 0

3 Semaphore paperSem = 0

4 Semaphore matchSem = 0

The boolean variables indicate whether or not an ingredient is on the table.
The pushers use tobaccoSem to signal the smoker with tobacco, and the other
semaphores likewise.
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4.5.3 Smoker problem solution

Here is the code for one of the pushers:

Listing 4.45: Pusher A

1 tobacco.wait ()

2 mutex.wait ()

3 if (isPaper)

4 isPaper = false

5 matchSem.signal ()

6 else if (isMatch)

7 isMatch = false

8 paperSem.signal ()

9 else

10 isTobacco = true

11 mutex.signal ()

This pusher wakes up any time there is tobacco on the table. If it finds
isPaper true, it knows that Pusher B has already run, so it can signal the
smoker with matches. Similarly, if it finds a match on the table, it can signal
the smoker with paper.
But if Pusher A runs first, then it will find both isPaper and isMatch false.

It cannot signal any of the smokers, so it sets isTobacco.
The other pushers are similar. Since the pushers do all the real work, the

smoker code is trivial:

Listing 4.46: Smoker with tobacco

1 tobaccoSem.wait ()

2 makeCigarette ()

3 agentSem.signal ()

4 smoke ()

Parnas presents a similar solution that assembles the boolean variables, bit-
wise, into an integer, and then uses the integer as an index into an array of
semaphores. That way he can avoid using conditionals (one of the artificial
constraints). The resulting code is a bit more concise, but its function is not as
obvious.

4.5.4 Generalized Smokers’ Problem

Parnas suggested that the smokers’ problem becomes more difficult if we modify
the agent, eliminating the requirement that the agent wait after putting out
ingredients. In this case, there might be multiple instances of an ingredient on
the table.
Puzzle: modify the previous solution to deal with this variation.
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Chapter 5

Not-so-classical

synchronization problems

5.1 Building H2O

This problem has been a staple of the Operating Systems class at U.C. Berke-
ley for at least a decade. It seems to be based on an exercise in Andrews’s
Concurrent Programming [1].
There are two kinds of threads, oxygen and hydrogen. In order to assemble

these threads into water molecules, we have to create a barrier that makes each
thread wait until a complete molecule is ready to proceed.
As each thread passes the barrier, it should invoke a method called bond.

You must guarantee that all the threads from one molecule invoke bond before
any of the threads from the next molecule do.
In other words:

• If an oxygen thread arrives at the barrier when no hydrogen threads are
present, it has to wait for two hydrogen threads.

• If a hydrogen thread arrives at the barrier when no other threads are
present, it has to wait for an oxygen thread and another hydrogen thread.

• If we examine the sequence of threads that invoke bond and divide them
into groups of three, each group will contain one oxygen and two hydrogen
threads.

We don’t have to worry about matching the threads up explicitly; that is,
the threads do not necessarily know which other threads they are paired up
with. The key is just that threads pass the barrier in complete sets.
Puzzle: Write synchronization code for oxygen and hydrogen molecules.
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5.1.1 H2O hint

Here are the variables I used in my solution:

Listing 5.1: Water building hint

1 Semaphore hydroSem = 0

2 Semaphore hydroSem2 = 0

3 Semaphore oxySem = 0

4 Semaphore mutex = 1

5 int count = 0

Hydrogen threads have to wait twice, first on hydroSem, later on hydroSem2;
oxygen threads wait on oxySem. count keeps track of how many hydrogen
threads are waiting for oxygen.
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5.1.2 H2O solution

Initially hydroSem and oxySem are locked. When an oxygen thread arrives it
signals hydroSem twice, allowing two hydrogens to proceed. Then the oxygen
thread waits for the hydrogen threads to arrive.

Listing 5.2: Oxygen code

1 signal (hydroSem)

2 signal (hydroSem)

3
4 wait (oxyMutex)

5 wait (oxySem)

6 bond ()

7 signal (oxyMutex)

In order for a hydrogen thread to pass Line 1, there must be an oxygen
thread waiting. The mutex-protected counter keeps track of how many hydro-
gen threads have arrived. When count gets to 2, we signal oxySem once and
hydroSem2 twice.

Listing 5.3: Hydrogen code

1 wait (hydroSem)

2 mutex.wait ()

3 count++

4 if (count == 2)

5 signal (oxySem)

6 signal (hydroSem2)

7 signal (hydroSem2)

8 count = 0

9 mutex.signal ()

10
11 wait (hydroSem2)

12 bond ()

To demonstrate the correctness of this solution, consider the following
medium-level assertions:

• For every molecule, we need to signal oxySem once and both hydrogen
semaphores twice.

• Every oxygen thread signals hydroSem twice.

• In each pair of hydrogen threads, one of them signals oxySem once and
hydroSem2 twice.

There is one aspect of this solution that is disconcerting but that may not
be problematic. Hydrogen threads do not necessarily invoke bond in the same
order they pass through hydroSem. In particular, an oxygen thread might signal
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two hydrogen threads and then end up bonding with two different hydrogen
threads. That outcome does not violate the problem constraints as stated, but
at the same time it doesn’t seem quite right.
If you are bothered by this problem, rewrite the solution to fix it. You might

want to do the next problem first and then come back.

5.2 River crossing problem

This problem is from a problem set written by Anthony Joseph at U.C. Berkeley,
but I don’t know if he is the original author. It is similar to the H2O problem
in the sense that it is a peculiar sort of barrier that only allows threads to pass
in certain combinations.
Somewhere near Redmond, Washington there is a rowboat that is used by

both Linux hackers and Microsoft employees (serfs) to cross a river. The ferry
can hold exactly four people; it won’t leave the shore with more or fewer. To
guarantee the safety of the passengers, it is not permissible to put one hacker
in the boat with three serfs, or to put one serf with three hackers. Any other
combination is safe.
As each thread boards the boat it should invoke a function called board. You

must guarantee that all four threads from each boatload invoke board before
any of the threads from the next boatload do.
After all four threads have invoked board, exactly one of them should call

a function named rowBoat, indicating that that thread will take the oars. It
doesn’t matter which thread calls the function, as long as one does.
Don’t worry about the direction of travel. Assume we are only interested in

traffic going in one of the directions.
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5.2.1 River crossing hint

Here are the variables I used in my solution:

Listing 5.4: River crossing hint

1 Semaphore mutex = 1

2 Barrier barrier = 4

3 int hackers = 0

4 int serfs = 0

5 Semaphore hackerSem = 0

6 Semaphore serfSem = 0

7 local boolean iAmTheCaptain = false

hackers and serfs count the number of hackers and serfs waiting to board.
Since they are both protected by mutex, we can check the condition of both
variables without worrying about an untimely update.

hackerSem and serfSem allow us to control the number of hackers and serfs
that pass. The barrier makes sure that all four threads have invoked board

before the captain invokes rowBoat.
iAmTheCaptain is a boolean, meaning it is true or false. Initially all threads

set iAmTheCaptain = false. Only one thread from each boat sets it to true.
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5.2.2 River crossing solution

The basic idea of this solution is that each arrival updates one of the counters
and then checks whether it makes a full complement, either by being the fourth
of its kind or by completing a mixed pair of pairs.

I’ll present the code for hackers; the serf code is symmetric (except, of course,
that it is 1000 times bigger, full of bugs, and it contains an embedded web
browser):

Listing 5.5: River crossing solution

1 mutex.wait ()

2 hackers++

3 if (hackers == 4)

4 hackerSem.signal (4) // signal four times

5 hackers = 0

6 iAmTheCaptain = true

7 else if (hackers == 2 and serfs >= 2)

8 hackerSem.signal (2) // signal twice

9 serfSem.signal (2) // signal twice

10 serfs -= 2

11 hackers = 0

12 iAmTheCaptain = true

13 else

14 mutex.signal () // captain keeps the mutex

15
16 wait (hackerSem) // wait here to board

17
18 board ()

19 barrier.wait () // wait until all 4 have boarded

20
21 if (iAmTheCaptain)

22 mutex.signal ()

23 rowBoat ()

This is the first case we have seen where a mutex does not have a clear end
point. In most cases, threads enter the mutex, update the counter, and exit the
mutex. Then they wait on hackerSem or serfSem.

But when a thread arrives that forms a complete boatload, it has to signal
hackerSem and serfSem to allow the other threads to board. Then it adjusts
the counters. Finally, it has to hold onto the mutex until all the threads have
boarded.

The barrier keeps track of how many threads have boarded. When the last
thread arrives, all threads proceed. One of them, the captain, releases the mutex
(finally) and then rows the boat.

Here are some middle-level assertions you might want to prove to yourself:
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• There can’t be more than 4 hackers or 4 serfs in the boarding area at a
time.

• When all four passengers have boarded, and the captain is about to invoke
rowBoat there can be at most 1 thread in the boarding area.

5.3 The unisex bathroom problem

I wrote this problem1 when my friend Shelby Nelson left her position teaching
physics at Colby College and took a job at Xerox.
She was working in a cubicle in the basement of a concrete monolith, and

the nearest women’s bathroom was two floors up. She proposed to the Uberboss
that they convert the men’s bathroom on her floor to a unisex bathroom, sort
of like on Ally McBeal.
The Uberboss agreed, provided that the following synchronization con-

straints can be maintained:

• There cannot be men and women in the bathroom at the same time.

• There should never be more than three employees squandering company
time in the bathroom.

Of course the solution should avoid deadlock. For now, though, don’t worry
about starvation. You may assume that the bathroom is equipped with all the
semaphores you need.

1Later I learned that a nearly identical problem appears in Andrews’s Concurrent

Programming[1]
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5.3.1 Unisex bathroom hint

Here are the variables I used in my solution:

Listing 5.6: Unisex bathroom hint

1 Semaphore empty = 1

2 Louie maleLouie, femaleLouie

3 Semaphore maleMultiplex = 3

4 Semaphore femaleMultiplex = 3

empty is 1 if the room is empty and 0 otherwise.
maleLouie allows men to bar women from the room. When the first male

enters, the filo locks empty, barring women; When the last male exist, it unlocks
empty, allowing women to enter. Women do likewise using femaleLouie.

maleMultiplex and femaleMultiplex ensure that there are no more than
three men and three women in the system at a time.
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5.3.2 Unisex bathroom solution

Here is the female code:

Listing 5.7: Unisex bathroom solution (female)

1 femaleLouie.lock (empty)

2 femaleMultiplex.wait ()

3 bathroom code here

4 femaleMultiplex.signal ()

5 female Louie.unlock (empty)

The male code is similar.
The exclusion pattern in this problem might be called categorical mutual

exclusion. A thread in the critical section does not necessarily exclude other
threads, but the presence of one category in the critical section excludes other
categories.
Are there any problems with this solution?
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5.3.3 No-starve unisex bathroom problem

The problem with the previous solution is that it allows starvation. A long line
of women can arrive and enter while there is a man waiting, and vice versa.
Puzzle: fix the problem.
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5.3.4 No-starve unisex bathroom solution

As we have seen before, we can use a turnstile to allow one kind of thread to
stop the flow of the other kind of thread. This time we’ll look at the male code:

Listing 5.8: No-starve unisex bathroom solution (male)

1 turnstile.wait ()

2 maleLouie.lock (empty)

3 turnstile.signal ()

4
5 maleMultiplex.wait ()

6 bathroom code here

7 maleMultiplex.signal ()

8
9 maleLouie.unlock (empty)

As long as there are men in the room, new arrivals will pass through the
turnstile and enter. If there are women in the room when a male arrives, the
male will block inside the turnstile, which will bar all later arrivals (male and
female) from entering until the current occupants leave. At that point the male
in the turnstile enters, possibly allowing additional males to enter.
The female code is similar, so if there are men in the room an arriving female

will get stuck in the turnstile, barring additional men.

5.3.5 Efficient no-starve unisex bathroom problem

There is one aspect of this solution that is possibly inefficient. If the system is
busy, then there will often be several threads, male and female, queued on the
turnstile. Each time empty is signalled, one thread will leave the turnstile and
another will enter. If the new thread is the opposite gender, it will promptly
block, barring additional threads. Thus, there will usually be only 1-2 threads in
the bathroom at a line, and the system will not take advantage of the available
parallelism.
Puzzle: Extend this solution so that when empty is signalled by an exiting

thread, a waiting thread of the opposite gender proceeds (if there is one), along
with up to two additional threads of the same gender.
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5.3.6 Efficient no-starve unisex bathroom hint

The fundamental problem is that only one thread can wait inside the turnstile,
so when the bathroom is empty we are only guaranteed that one new thread
can enter.
We would like to replace the turnstile with a “waiting room,” that can hold

multiple threads of the same gender. The requirements for the waiting room
are similar to the requirements for the bathroom itself – it has limited capacity
and should enforce categorical mutual exclusion.
My solution uses the following additional variables.

Listing 5.9: Unisex bathroom hint

1 Semaphore waitRoomEmpty = 1

2 Louie maleWaitLouie, femaleWaitLouie

3 Semaphore maleWaitMultiplex = 3

4 Semaphore femaleWaitMultiplex = 3
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5.3.7 Efficient unisex bathroom solution

Listing 5.10: Efficient unisex bathroom solution

1
2 maleWaitMultiplex.wait ()

3 maleWaitLouie.lock (waitRoomEmpty)

4 maleLouie.lock (empty)

5 maleWaitLouie.unlock (waitRoomEmpty)

6 maleWaitMultiplex.signal ()

7
8 maleMultiplex.wait ()

9 bathroom code here

10 maleMultiplex.signal ()

11
12 maleLouie.unlock (empty)

The multiplex allows up to three male threads to be in the waiting room.
The filo and waitRoomEmpty enforce categorical mutual exclusion.
Imagine that there are female threads in the bathroom. Additional female

threads pass through the waiting room without blocking. When the first male
thread arrives, it blocks on maleLouie. At this point, female threads hold empty
but male threads hold waitRoomEmpty. Thus, additional female threads cannot
enter the waiting room. Up to two additional male threads can enter the waiting
room, where they will also block on maleLouie. Any additional male threads
will block on maleWaitMultiplex.
Eventually the last female thread will signal empty. At that point, the male

threads in maleLouie unblock and enter the bathroom. When the last male
thread leaves the waiting room, it signals waitRoomEmpty. At this point a
female thread may enter the waiting room, but there is no guarantee that a
male threads doesn’t get there first.
So this solution solved the efficiency problem, but it brought back the star-

vation problem. Fortunately, we can solve the starvation problem the same way
we did before, by adding a turnstile:
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Listing 5.11: Efficient unisex bathroom solution

1 maleWaitMultiplex.wait ()

2
3 turnstile.wait ()

4 maleWaitLouie.lock (waitRoomEmpty)

5 turnstile.signal ()

6
7 maleLouie.lock (empty)

8 maleWaitLouie.unlock (waitRoomEmpty)

9 maleWaitMultiplex.signal ()

10
11 maleMultiplex.wait ()

12 bathroom code here

13 maleMultiplex.signal ()

14
15 maleLouie.unlock (empty)

At this point the solution is complicated enough that it is hard to be sure
that it is correct. To be honest, the effort to make the solution more efficient may
have been misguided. The original (no-starve) solution is probably adequate if
the number of threads competing for the bathroom is small. If that is the case,
then the original solution is probably more efficient just because it spends less
time fiddling with semaphores!
Also, keep in mind that for the vast majority of applications correctness is

more important than efficiency. Write code that is provably correct.

5.4 Baboon crossing problem

This problem is adapted from Tanenbaum’s Operating Systems: Design and

Implementation [9]. There is a deep canyon somewhere in Kruger National
Park, South Africa, and a single rope that spans the canyon. Baboons can cross
the canyon by swinging hand-over-hand on the rope, but if two baboons going in
opposite directions meet in the middle, they will fight and drop to their deaths.
Furthermore, the rope is only strong enough to hold 5 baboons. If there are
more baboons on the rope at the same time, it will break.
Assuming that we can teach the baboons to use semaphores, we would like

to design a synchronization scheme with the following properties:

• Once a baboon has begun to cross, it is guaranteed to get to the other
side without running into a baboon going the other way.

• There are never more than 5 baboons on the rope.

• A continuing stream of baboons crossing in one direction should not bar
baboons going the other way indefinitely (no starvation).

I will not include a solution to this problem for reasons that should be clear.
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5.5 The search-insert-delete problem

This one is from Andrews’s Concurrent Programming [1].

Three kinds of threads share access to a singly-linked list:
searchers, inserters and deleters. Searchers merely examine the list;
hence they can execute concurrently with each other. Inserters add
new items to the end of the list; insertions must be mutually ex-
clusive to preclude two interters from inserting new items at about
the same time. However, one insert can proceed in parallel with
any number of searches. Finally, deleters remove items from any-
where in the list. At most one deleter process can access the list at
a time, and deletion must also be mutually exclusive with searches
and insertions.

Puzzle: write code for searchers, inserters and deleters that enforces this
kind of three-way categorical mutual exclusion.
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5.5.1 Search-Insert-Delete hint

Listing 5.12: Search-Insert-Delete hint

1 Semaphore insertMutex = 1

2 Semaphore noSearcher = 1

3 Semaphore noInserter = 1

4 Louie searchLouie = 0

5 Louie insertLouie = 0

insertMutex ensures that only one inserter is in its critical section at a time.
noSearcher and noInserter indicate (surprise) that there are no searchers and
no inserters in their critical sections; a deleter needs to hold both of these to
enter.

searchLouie and insertLouie are used by searchers and inserters to ex-
clude deleters.
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5.5.2 Search-Insert-Delete solution

Here is my solution:

Listing 5.13: Search-Insert-Delete solution (searcher)

1 searchLouie.wait (noSearcher)

2 \\ critical section

3 searchLouie.signal (noSearcher)

The only thing a searcher needs to worry about is a deleter. The first searcher
in takes noSearcher; the last one out releases it.

Listing 5.14: Search-Insert-Delete solution (inserter)

1 insertLouie.wait (noInserter)

2 insertMutex.wait ()

3 \\ critical section

4 insertMutex.signal ()

5 insertLouie.signal (noInserter)

Similarly, the first inserter takes noInserter and the last one out releases
it. Since searchers and inserters compete for different semaphores, they can be
in their critical section concurrently. But insertMutex ensures that only one
inserter is in the room at a time.

Listing 5.15: Search-Insert-Delete solution (deleter)

1 noSearcher.wait ()

2 noInserter.wait ()

3 \\ critical section

4 noInserter.signal ()

5 noSearcher.signal ()

Since the deleter holds both noSearcher and noInserter, it is guaranteed
exclusive access. Of course, any time we see a thread holding more than one
semaphore, we need to check for deadlocks. By trying out a few scenarios, you
should be able to convince yourself that this solution is deadlock free.
On the other hand, like many categorical exclusion problems, this one is

prone to starvation. As we saw in the Readers-Writers problem, we can some-
times mitigate this problem by giving priority to one category of threads ac-
cording to application-specific criteria. But in general it is difficult to write
an efficient solution (one that allows the maximum degree of concurrency) that
avoids starvation.
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5.6 The dining savages problem

Another one from the excellent collection in Andrews’s Concurrent Programming

[1].

A tribe of savages eats communal dinners from a large pot that
can hold M servings of stewed missionary. When a savage wants to
eat, he helps himself from the pot, unless it is empty. If the pot is
empty, the savage wakes up the cook and the waits until the cook
has refilled the pot.

Any number of savage threads run the following code:

Listing 5.16: Unsynchronized savage code

1 while (1) {

2 getServingFromPot ()

3 eat ()

4 }

And one cook thread runs this code:

Listing 5.17: Unsynchronized cook code

1 while (1) {

2 putServingsInPot (M)

3 }

Puzzle: Add synchronization code for the savages and the cook that prevents
deadlock, and awakens the cook only when the pot is empty.
Note: This problem is based on a cartoonish representation of the history of

Western missionaries among hunter-gatherer societies. Some humor is intended
by the allusion to the Dining Philosophers problem, but the representation of
“savages” here isn’t intended to be any more realistic than the previous repre-
sentation of philosophers. If you are interested in hunter-gatherer societies, I
recommend Jared Diamond’s Guns, Germs and Steel, among many other pop-
ular books about anthropology.
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5.6.1 Dining Savages hint

It is tempting to use a semaphore to keep track of the number of servings, as
in the producer-consumer problem. But in order to signal the cook when the
pot is empty, a thread would have to know before decrementing the semaphore
whether it would have to wait, and we just can’t do that.
An alternative is to use a mutex-protected counter to keep track of the

number of servings. If a savage finds the counter at zero, he wakes the cook and
waits for a signal that the pot is full. Here are the variables I used:

Listing 5.18: Dining Savages hint

1 int servings

2 Semaphore mutex = 1

3 Semaphore cook = 0

4 Semaphore savage = 0
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5.6.2 Dining Savages solution

The code for the cook is straightforward:

Listing 5.19: Dining Savages solution (cook)

1 while (1) {

2 cook.wait ()

3 putServingsInPot (M)

4 savage.signal ()

5 }

The code for the savages is only a little more complicated. As each savage
passes through the mutex, he decrements servings, in effect making a reserva-
tion for the meal he is about to get.

Listing 5.20: Dining Savages solution (savage)

1 while (1) {

2 mutex.get ()

3 if (servings == 0)

4 cook.signal ()

5 savage.wait ()

6 servings = M

7 servings--

8 mutex.signal ()

9
10 getServingFromPot ()

11 eat ()

12 }

This solution is deadlock-free. The only opportunity for deadlock comes
when the thread that holds mutex waits for savage. But since that thread has
just signalled cook, it is guaranteed to wake when the cook signals savage.
It is not immediately obvious that the reservation system works, since it

seems possible for a thread to decrement servings, release the mutex, and
then find the pot empty by the time it invokes getServingFromPot. I will leave
it to you to convince yourself that that is not possible.
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5.7 The barbershop problem

The original barbershop problem was proposed by Dijkstra. A variation of it
appears in Silberschatz and Galvin’s Operating Systems Concepts [7].

A barbershop consists of a waiting room with n chairs, and the
barber room containing the barber chair. If there are no customers
to be served, the barber goes to sleep. If a customer enters the
barbershop and all chairs are occupied, then the customer leaves
the shop. If the barber is busy, but chairs are available, then the
customer sits in one of the free chairs. If the barber is asleep, the
customer wakes up the barber. Write a program to coordinate the
barber and the customers.

To make the problem a little more concrete, I added the following informa-
tion:

• If a customer thread arrives when the shop is full, it can invoke exit. This
operation allows the thread to skip to whatever it is supposed to do next,
or terminate.

• When the barber invokes cutHair there should be exactly one thread
invoking getHairCut concurrently.
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5.7.1 Barbershop hint

Listing 5.21: Barbershop hint

1 int customers

2 Semaphore mutex = 1

3 Semaphore customer = 0

4 Semaphore barber = 0

customers counts the number of customers in the shop; it is protected by
mutex.
The barber waits on customer until a customer enters the shop, then the

customer waits on barber until the barber signals him to take a seat.
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5.7.2 Barbershop solution

If there are n customers in the waiting room and one in the barber chair, then
the shop is full and any customers that arrive immediately invoke exit.
Otherwise each customer signals the barber and waits for a signal from the

barber. This is exactly the rendezvous pattern from Section 3.2.

Listing 5.22: Barbershop solution (customer)

1 mutex.wait ()

2 if (customers == n+1)

3 mutex.signal ()

4 exit ()

5 customers++

6 mutex.signal ()

7
8 customer.signal ()

9 barber.wait ()

10 getHairCut ()

11
12 mutex.wait ()

13 customers--

14 mutex.signal ()

The barber runs in a loop. Each time a customer signals, the barber wakes,
signals one customer, and gives one hair cut. If another customer arrives while
the barber is busy, then on the next iteration the barber will pass the barber
semaphore without sleeping.

Listing 5.23: Barbershop solution (barber)

1 customer.wait ()

2 barber.signal ()

3 cutHair ()
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5.8 Hilzer’s Barbershop problem

William Stallings [8] presents a more complicated version of the barbershop
problem, which he attributes to Ralph Hilzer at the California State University
at Chico.

Our barbershop has three chairs, three barbers, and a waiting
area that can accomodate four customers on a sofa and that has
standing room for additional customers. Fire codes limit the total
number of customers in the shop to 20.

A customer will not enter the shop if it is filled to capacity with
other customers. Once inside, the customer takes a seat on the sofa
or stands if the sofa is filled. When a barber is free, the customer
that has been on the sofa the longest is served and, if there are any
standing customers, the one that has been in the shop the longest
takes a seat on the sofa. When a customer’s haircut is finished,
any barber can accept payment, but because there is only one cash
register, payment is accepted for one customer at a time. The bar-
bers divide their time among cutting hair, accepting payment, and
sleeping in their chair waiting for a customer.

Customers should invoke the following functions, in order: enterShop,
sitOnSofa, sitInBarberChair, pay, exitShop.

Barbers invoke cutHair and acceptPayment. The following synchronization
constraints apply:

• Customers cannot invoke enterShop if the shop is at capacity.

• If the sofa is full, an arriving customer cannot invoke sitOnSofa until one
of the customers on the sofa invokes sitInBarberChair.

• If all three barber chairs are busy, an arriving customer cannot invoke
sitInBarberChair until one of the customers in a chair invokes pay.

• The customer has to pay before the barber can acceptPayment.

• The barber must acceptPayment before the customer can exitShop.

One difficulty with this problem is that in each waiting area (the sofa and the
standing room), customers have to be served in first-in-first-out (FIFO) order.
If our implementation of semaphores happens to enforce FIFO queueing, then
we can use nested multiplexes to create the waiting areas. Otherwise we can
use Fifo objects.

Puzzle: Write synchonization code that enforces all the synchronization con-
straints for Hilzer’s barbershop.
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5.8.1 Hilzer’s barbershop hint

Here are the variables I used in my solution:

Listing 5.24: Hilzer’s barbershop hint

1 Semaphore mutex = 1

2 int customers

3 Fifo standingRoom (16)

4 Fifo sofa (4)

5 Semaphore chair = 3

6 Semaphore barber = 0

7 Semaphore customer = 0

8 Semaphore cash = 0

9 Semaphore receipt = 0

mutex protects customers, which keeps track of the number of customers
in the shop so that if a thread arrives when the shop is full, it can exit.
standingRoom and sofa are Fifos that represent the waiting areas. chair is a
multiplex that limits the number of customers in the seating area.
The other semaphores are used for the rendezvous between the barber and

the customers. The customer signals barber and then wait on customer. Then
the customer signals cash and waits on receipt.

5.8.2 Hilzer’s barbershop solution

There is nothing here that is new; it’s just a combination of patterns we have
seen before.

Listing 5.25: Hilzer’s barbershop solution (customer)

1 mutex.wait ()

2 if (customers == 20)

3 mutex.signal ()

4 exit ()

5 customers++

6 mutex.signal ()

7
8 standingRoom.wait ()

9 enterShop ()

10
11 sofa.wait()

12 standingRoom.signal ()

13 sitOnSofa ()

14
15 chair.wait ()

16 sofa.signal ()

17 sitInBarberChair ()

18
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19 customer.signal ()

20 barber.wait ()

21 getHairCut ()

22
23 pay ()

24 cash.signal ()

25 receipt.wait ()

26
27 mutex.wait ()

28 customers--

29 mutex.signal ()

30 leaveBarberShop ()

The mechanism that counts the number of customers and allows threads to
exit is the same as in the previous problem.
In order to maintain FIFO order for the whole system, threads cascade from

standingRoom to sofa to chair in much the same way they cascade from one
semaphore to the next in the implementation of Fifo.
The exchange with the barber is basically two consecutive rendezvouses2

The code for the barber is self-explanatory:

Listing 5.26: Hilzer’s barbershop solution (barber)

1 customer.wait ()

2 barber.signal ()

3 cutHair()

4
5 cash.wait ()

6 acceptPayment ()

7 receipt.signal ()

If two customers signal cash concurrently, there is no way to know which
waiting barber will get which signal, but the problem specification says that’s
ok. Any barber can take money from any customer.

2The plural of rendezvous is rare, and not all dictionaries agree about what it is. Another
possibility is that the plural is also spelled “rendezvous,” but the final “s” is pronounced.
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5.9 The room party problem

I wrote this problem while I was at Colby College. One semester there was
a controversy over an allegation by a student that someone from the Dean of
Students Office had searched his room in his absence. Although the allegation
was public, the Dean of Students wasn’t able to comment on the case, so we
never found our what really happened. I wrote this problem to tease a friend
of mine, who was the Dean of Student Housing.
The following synchronization constraints apply to students and the Dean

of Students:

1. Any number of students can be in a room at the same time.

2. The Dean of Students can only enter a room if there are no students in
the room (to conduct a search) or if there are more than 50 students in
the room (to break up the party).

3. While the Dean of Students is in the room, no additional students may
enter, but students may leave.

4. The Dean of Students may not leave the room until all students have left.

5. There is only one Dean of Students, so you do not have to enforce exclusion
among multiple deans.

Puzzle: write synchronization code for students and for the Dean of Students
that enforces all of these constraints.
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5.9.1 Room party hint

Listing 5.27: Room party hint

1 int students // number of students in room

2 Semaphore mutex = 1 // protect the student count

3 Semaphore noDean = 1 // the dean is not in the room

4 Semaphore deanCanEnter = 1 // the dean may enter

5 Semaphore noStudents = 1 // there are no students in the room

students counts the number of students in the room. mutex protects the
counter (and also allows the dean to bar students from entering).

noDean is 1 when the dean is not in the room. noStudents is 1 when there
are no students in the room. deanCanEnter is 1 when there are no students or
more than 50.
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5.9.2 Room party solution

This problem is hard. I went through a lot of trial and error before I found a
solution that (I am pretty sure) works. One of the difficulties is that we need
to allow students to leave without allowing new students to enter; the solution
I chose requires students to hold two mutexes (mutex and noDean) to enter and
only one to leave.

noDean is a mutex for both students and deans. It prevents students from
entering when the dean is in the room. It also prevents the dean from entering
while a student is in the middle of checking in. Incidentally, it enforces mutual
exclusion among multiple deans, which is not required, but it is acceptable.

noStudents is 1 if there are no students in the room and 0 otherwise. The
student threads maintain it using a pattern similar to a Louie; the first student
in locks it and the last one out unlocks it. The deans use noStudents to ensure
that all the students have left the room before they exit.

deanCanEnter is a turnstile for deans. When there are no students in the
room, the turnstile is unlocked. The first student to enter locks it, but the
50th unlocks it again. Similarly, when the number of students drops below 50,
deanCanEnter gets locked again. When the last student exits, it is unlocked
one more time.

Listing 5.28: Room party solution (student)

1 noDean.wait ()

2 mutex.wait ()

3 count++

4 if (count == 1)

5 deanCanEnter.wait ()

6 noStudents.wait ()

7 if (count == 51)

8 deanCanEnter.signal ()

9 mutex.signal ()

10 noDean.signal ()

11
12 party ()

13
14 mutex.wait ()

15 count--

16 if (count == 0)

17 noStudents.signal ()

18 deanCanEnter.signal ()

19 if (count == 50)

20 deanCanEnter.wait ()

21 mutex.signal ()

The dean’s code uses mutex in a non-standard way. The dean gets the
mutex to prevent students from changing the counter while the dean is checking
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it. If there are more than 50 students, then the dean has to release the mutex,
allowing students to exit, before waiting on noStudents. Otherwise the program
deadlocks.

Listing 5.29: Room party solution (dean)

1 deanCanEnter.wait ()

2 deanCanEnter.signal ()

3
4 noDean.wait ()

5 mutex.wait ()

6 if (count == 0)

7 search ()

8 mutex.signal ()

9 if (count > 50)

10 breakUpParty ()

11 mutex.signal ()

12 noStudents.wait ()

13 noStudents.signal ()

14 else

15 mutex.signal ()

16 noDean.signal ()

In this solution, it is possible for students to enter and leave after the dean
passes the turnstile, which means that by the time the dean checks the counter
there might be more than 0 and fewer than 50 students in the room. In this
case, the dean should exit without invoking search or breakUpParty. It is not
efficient to allow deans to enter and exit without doing useful work, but we
expect this to happen only occasionally, since it depends on a fluke of timing.
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5.10 The Santa Claus problem

This problem is fromWilliam Stallings’s Operating Systems [8], but he attributes
it to John Trono of St. Michael’s College in Vermont.

Stand Claus sleeps in his shop at the North Pole and can only be
awakened by either (1) all nine reindeer being back from their vaca-
tion in the South Pacific, or (2) some of the elves having difficulty
making toys; to allow Santa to get some sleep, the elves can only
wake him when three of them have problems. When three elves are
having their problems solved, any other elves wishing to visit Santa
must wait for those elves to return. If Santa wakes up to find three
elves waiting at his shop’s door, along with the last reindeer having
come back from the tropics, Santa has decided that the elves can
wait until after Christmas, becuase it is more important to get his
sleigh ready. (It is assumed that the reindeer do not want to leave
the tropics, and therefore they stay there until the last possible mo-
ment.) The last reindeer to arrive must get Santa while the others
wait in a warming hut before being harnessed to the sleigh.

Here are some addition specifications:

• After the ninth reindeer arrives, Santa must invoke prepareSleigh, and
then all nine reindeer must invoke getHitched.

• After the third elf arrives, Santa must invoke helpElves. Concurrently,
all three elves should invoke getHelp.

• All three elves must invoke getHelp before any additional elves enter
(increment the elf counter).

Santa should run in a loop so he can help many sets of elves. We can assume
that there are exactly 9 reindeer, but there may be any number of elves.
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5.10.1 Santa problem hint

Listing 5.30: Santa problem hint

1 int elves = 0

2 int reindeer = 0

3 Semaphore santaSem = 0

4 Semaphore reindeerSem = 0

5 Semaphore elfTex = 1

6 Semaphore mutex = 1

elves and reindeer are counters, both protected by mutex. Elves and
reindeer get mutex to modify the counters; Santa gets it to check them.
Santa waits on santaSem until either an elf or a reindeer signals him.
The reindeer wait on reindeerSem until Santa signals them to enter the

paddock and get hitched.
The elves use elfTex to prevent additional elves from entering while three

elves are being helped.
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5.10.2 Santa problem solution

Santa’s code is pretty straightforward. Remember that it runs in a loop.

Listing 5.31: Santa problem solution (Santa)

1 santaSem.wait ()

2 mutex.wait ()

3 if (reindeer == 9)

4 prepareSleigh ()

5 reindeerSem.signal (9)

6 else if (elves == 3)

7 helpElves ()

8 mutex.signal ()

When Santa wakes up, he checks which of the two conditions holds and
either deals with the reindeer or the waiting elves. If there are nine reindeer
waiting, Santa invokes prepareSleigh, then signals reindeerSem nine times,
allowing the reindeer to invoke getHitched. If there are elves waiting, Santa
just invokes helpElves. There is no need for the elves to wait for Santa; once
they signal santaSem, they can invoke getHelp immediately.
Here is the code for reindeer:

Listing 5.32: Santa problem solution (reindeer)

1 mutex.wait ()

2 reindeer++

3 if (reindeer == 9)

4 santaSem.signal ()

5 mutex.signal ()

6
7 reindeerSem.wait ()

8 getHitched ()

The ninth reindeer signals Santa and then joins the other reindeer waiting
on reindeerSem. When Santa signals, the reindeer all execute getHitched.
The elf code is similar, except that when the third elf arrives it has to bar

subsequent arrivals until the first three have executed getHelp.
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Listing 5.33: Santa problem solution (elves)

1 elfTex.wait ()

2 mutex.wait ()

3 elves++

4 if (elves == 3)

5 santaSem.signal ()

6 else

7 elfTex.signal ()

8 mutex.signal ()

9
10 getHelp ()

11
12 mutex.wait ()

13 elves--

14 if (elves == 0)

15 elfTex.signal ()

16 mutex.signal ()

The first two elves release elfTex at the same time they release the mutex,
but the last elf holds elfTex, barring other elves from entering until all three
elves have invoked getHelp.
The last elf to leave releases elfTex, allowing the next batch of elves to

enter.
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5.11 The roller coaster problem

This problem is from Andrews’s Concurrent Programming [1], but he attibutes
it to J. S. Herman’s Master’s thesis.

Suppose there are n passenger threads and a car thread. The
passengers repeatedly wait to take rides in the car, which can hold
C passengers, where C < n. The car can go around the tracks only
when it is full.

Here are some additional details:

• After the car arrives, C passengers should invoke boardCar, then the car
should invoke depart, then passengers should invoke leaveCar.

Puzzle: Write code for the passengers and car that enforces these constraints.
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5.11.1 Roller Coaster hint

Listing 5.34: Roller Coaster hint

1 Semaphore car = 0

2 Semaphore allAboard = 0

3 Semaphore lastStop = 0

4 Semaphore mutex = 1

5 int passengers = 0

car indicates that the car has arrived; allAboard indicates that the car is
full; lastStop indicates that the car has departed and looped the track.

mutex protects passengers, which counts the number of passengers that
have invoked boardCar.
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5.11.2 Roller Coaster solution

Listing 5.35: Roller Coaster solution (car)

1 car.signal (C)

2 allAboard.wait ()

3 depart ()

4 lastStop.signal (C)

When the car arrives, it allows C passengers to proceed, then waits for the
last one to invoke boardCar. When it has departed, it allows C passengers to
disembark.

Listing 5.36: Roller Coaster solution (passenger)

1 car.wait ()

2 boardCar ()

3
4 mutex.wait ()

5 passengers++

6 if (passengers == C)

7 allAboard.signal ()

8 passengers = 0

9 mutex.signal ()

10
11 lastStop.wait ()

12 leaveCar ()

Passengers wait for the car before boarding, naturally, and wait for the car
to stop before leaving. The last passenger to board signals the car and resets
the passenger counter.
This solution does not generalize to the case where there is more than one

car. In order to do that, we have to satisfy some additional constraints:

• Only one car can be boarding at a time.

• Multiple cars can be on the track concurrently.

• Since cars can’t pass each other, they have to unload in the same order
they boarded.

Puzzle: assuming that we know that there are m cars, modify the previous
solution to handle the additional constraints.
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5.11.3 Multi-car Roller Coaster hint

We can assume that each car has a local variable i that contains an identifier
between 0 and m− 1. One way to initialize these variables is to pass the thread
through a barrier that assigns identifiers in order.
Two arrays of m semaphores keep the cars in order. As each thread enters

the boarding area, or prepares to unload, it waits on its own semaphore, and
then signals the next car in line.

Listing 5.37: Multi-car Roller Coaster hint

1 int m

2 local int i

3 Semaphore board[m] = { 1, 0, 0, ..., 0 }

4 Semaphore unload[m] = { 1, 0, 0, ..., 0 }

The function next computes the identifier of the next car in the sequence
(wrapping around from m − 1 to 0):

Listing 5.38: Implementation of next

1 int next (i) { return (i + 1) mod m }
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5.11.4 Multi-car Roller Coaster solution

Initially, only the car with identifier 0 can proceed. When each car finishes
boarding, it signals its successor. Any number of cars can invoke depart con-
currently, but when they enter the unloading area, again, they have to go in
order.
When the last car leaves an area, it signals the first, which restores the

original state of the semaphore array (or allows the first car to proceed, if it is
already waiting).

Listing 5.39: Multi-car Roller Coaster solution (car)

1 board[i].wait()

2 car.signal (C)

3 allAboard.wait ()

4 board[next(i)].signal()

5
6 depart ()

7
8 unload[i].wait()

9 lastStop.signal (C)

10 unload[next(i)].signal ()

In my first draft of this solution, I used the same array of semaphores for
board and unload. Why doesn’t that work?
One potential problem with this solution is that a car can start loading again

before the passengers from the previous load have left. If that bothers you, you
should have no trouble fixing it.
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5.12 The Bus problem

This problem was originally based on the Senate bus at Wellesley College. Riders
come to a bus stop and wait for a bus. When the bus arrives, all the waiting
riders invoke boardBus, but anyone who arrives while the bus is boarding has
to wait for the next bus. The capacity of the bus is 50 people; if there are more
than 50 people waiting, some will have to wait for the next bus.
When all the waiting riders have boarded, the bus can invoke depart. If the

bus arrives when there are no riders, it should depart immediately.
Puzzle: Write synchronization code that enforces all of these constraints.
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5.12.1 Bus problem hint

Here are the variables I used in my solution:

Listing 5.40: Bus problem hint

1 Semaphore mutex = 1;

2 int riders;

3 Semaphore turnstile = 1;

4 Semaphore multiplex = 50;

5 Semaphore bus = 0;

6 Semaphore allAboard = 0;

mutex protects riders, which keeps track of how many riders are waiting.
The turnstile controls access to the waiting area; it is initially open. When
the bus arrives, it locks the turnstile until everyone has boarded, which bars
late arrivals. The multiplex makes sure there are no more than 50 riders in
the boarding area.
Riders wait on bus, which gets signalled when the bus arrives. The bus waits

on allAboard, which gets signalled by the last student to board.
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5.12.2 Bus problem solution

Here is the code for the bus:

Listing 5.41: Bus problem solution (bus)

1 turnstile.wait()

2 if (riders == 0)

3 depart()

4 turnstile.signal

5 return

6
7 bus.signal()

8 allAboard.wait()

9
10 bus.wait()

11 depart()

12 turnstile.signal()

When the bus arrives, it gets and keeps turnstile, which prevents late
arrivals from entering the boarding area. If there are no rides, it departs imme-
diately. Otherwise, it signals bus and waits for the riders to board.
Here is the code for the riders:

Listing 5.42: Bus problem solution (riders)

1 multiplex.wait()

2
3 turnstile.wait()

4 riders++

5 turnsile.signal()

6
7 bus.wait()

8 bus.signal()

9 multiplex.signal()

10 boardBus()

11
12 mutex.wait ()

13 riders--

14 if (riders == 0) allAboard.signal();

15 mutex.signal ()

The multiplex controls the number of riders in the waiting area, although
strictly speaking, a rider doesn’t enter the waiting area until she passes the
turnstile. We increment riders inside the turnstile to guarantee that the count
is accurate when the bus arrives.
Riders wait on bus and then pass through one at a time. After boarding,

each rider gets the mutex and decrements the counter. When the last thread
boards, it signals allAboard, which allows the bus to leave.
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For the most part, this solution is just a combination of patterns we have seen
before. But there is one subtlety: notice that riders is not always protected
by the same mutex. The increment (Line 4) is protected by turnstile but the
decrement (Line 13) is protected by mutex. So we have to check whether one
thread might be incrementing while another is decrementing. Fortunately, we
can prove that this is impossible. If a rider holds mutex, then the bus must
be boarding, in which case the bus holds turnstile, so no threads can be
incrementing riders.
Challenge: if riders arrive while the bus is boarding, they might be annoyed

if you make them wait for the next one. Can you find a solution that allows
late arrivals to board without violating the other constraints?
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