
An empirical model of TCP performance

Allen B. Downey
Olin College of Engineering

Needham, MA 02492
downey@allendowney.com

Abstract

We propose a model of TCP performance that captures
the behavior of a set of network paths with diverse char-
acteristics. The model uses more parameters than oth-
ers, but we show that each feature of the model describes
an effect that is important for at least some paths. We
show that the model is sufficient to describe the datasets
we collected with acceptable accuracy. Finally, we show
that the model’s parameters can be estimated using simple,
application-level measurements.

1. Introduction

This paper addresses the question, “What do you need
to know about a network path in order to predict the per-
formance of TCP transfers on that path?” Our approach is
model-based in the sense that we use measurements to esti-
mate network characteristics and then use a network model
to make predictions. Our approach is empirical in the sense
that we try to capture all characteristics that affect perfor-
mance in current networks.

A number of models have been proposed that relate
TCP performance to various path characteristics, includ-
ing round trip time, drop rate and bottleneck bandwidth.
Most of these models focus on the steady state behavior
of long transfers [9][13][14][21][15][23][22][18][6]. Be-
cause these models omit slow start, they cannot predict the
performance of transfers where slow start makes up a sig-
nificant part of transfer time, which are the vast majority of
transfers.

Some models of short TCP transfers have been proposed
[4][16][1][26][25]. These models identify two sources of
variability in transfer times: variability in rtts and the effect
of dropped packets. Our datasets suggest a third source of
variability: nondeterminism in the growth of the conges-
tion window during slow start. In some cases, this nonde-
terminism is the primary source of variability.

Another limitation of these models is that they do not
address the transition from slow start to steady state (with
one exception [8]). For many paths, this transition happens
in the size range from 10–100 KB; it turns out that many
TCP transfers fall in this range [2].

Another limitation of many previous models1 is that
they treat the drop rate as exogenous; that is, a charac-
teristic of the network that is independent of the behavior
of TCP. For many network paths, an important determi-
nant of TCP performance is the occurrence of endogenous
drops, which are caused by the transfer itself. We deal with
this complexity by abstracting away the drop rate; in slow
start, we estimate the probability of dropping into conges-
tion avoidance, and in congestion avoidance, we estimate
the distribution of throughput directly.

Finally, most previous models generate single-value pre-
dictions. The goal of this work is to predict the distribution
of transfer times. This distribution can be used to generate
predictions for whatever moments, percentiles or intervals
are needed.

Thus, one contribution of this work is a model that in-
cludes all features that have a significant effect on TCP
performance, including slow start, the transition to steady
state, and the effect of the transfer itself on the drop rate.
Of course, the price of completeness is complexity. Our
model has more parameters than others, and it requires de-
tailed measurements of a specific path. We show that this
complexity is necessary; that is, a model that omits any of
these features will be inaccurate for many paths in the cur-
rent Internet. Conversely, we also show that the features
of this model are sufficient to describe the behavior of the
paths we observed (with two exceptions).

1.1. Availability of data

In order to predict the duration of a transfer, we have
to know something about the network path the transfer will

1One exception: Misra and Ott consider the case where loss probabil-
ity depends on the congestion window [17].

1

use. It is natural to ask what information we can reasonably
expect to have.

Of course, the answer depends on the environment. In
distributed environments, the performance characteristics
of the resources (computers, other devices, and the net-
work links that connect them) may be known, and traffic
characteristics may be available. For example, the Network
Weather Service (NWS) runs constantly in a Grid environ-
ment, monitoring the performance of a set of links and
making reports available to applications [27]. The tech-
niques we propose here could be used in this kind of envi-
ronment to collect data and make predictions.

For HTTP and other TCP transfers, it is less obvious
that the data needed to make a prediction are available.
Users navigate the Web unpredictably, making transfers
from many servers along many network paths.

To investigate the feasibility of predicting HTTP trans-
fers, we looked at logs from the Internet Traffic Archive
(http://ita.ee.lbl.gov/).

The BU-Web-Client dataset contains logs from WWW
proxy servers at Boston University from 1998. Although
users access many different servers, a small number of
servers handle a significant part of the traffic; for exam-
ple, the top ten servers handled 30% of the requests. This
observation suggests that a new request is likely to access
a server that has been accessed many times in the past.

To quantify this observation, we ran through the trace
sequentially and, for each request, counted the number of
times the same server had been accessed prior to the re-
quest. For the majority of accesses (63%), the history of
previous accesses includes at least 30 requests. For a larger
majority (81%) the history includes at least 10 requests.

Traces from other environments show similar patterns.
The LBL-CONN-7 dataset contains traces of more than
700,000 TCP connections to and from Lawrence Berkeley
Laboratories, recorded over 30 days in 1993. These con-
nections access 12,657 unique IP addresses, but again the
top ten addresses handled 32% of the connections. For each
connection we counted the number of prior connections to
the same address. A large majority of connections (81%)
enjoy a history that includes at least 30 connections.

Assuming, then, that the historical information we need
is available, how much space would be necessary to main-
tain it? Based on the LBL dataset, we can imagine keep-
ing data about 20,000 remote hosts. If we keep data from
the most recent 100 connections per host, and if most con-
nections transfer fewer than 100,000 bytes, such a history
would require about 32 KB per host, or a total of 625 MB.

We conclude that it is feasible to maintain a database
with traces of previous TCP connections, and that for most
of the paths a client uses, the database would contain in-
formation about a useful number of previous connections
(10–30).

1.2. Outline

We start with exploratory measurements intended to
identify the network characteristics with the biggest effect
on TCP performance and, conversely, details that can be
abstracted or omitted. In Section 2 we present our measure-
ment infrastructure and the results that led us to our model.
Section 3 presents the model and Section 4 the experiments
that validate it.

2. Measurement

To develop our model, we wanted to collect datasets
from network paths with a variety of characteristics. The
ubiquity and accessibility of Web servers makes them
a convenient tool for network measurements. We used
GNU’s wget (available from gnu.org/software/
wget) to transfer large files from a variety of Web servers.
We modified wget so that, for each transfer, it records two
vectors: ti is the time when the ith read started, and si is the
total number of bytes read when the ith read completed.

Two of our datasets come from servers provided by col-
laborators, so the characteristics of the servers and parts of
the network paths are known. Another 11 datasets come
from servers we found in traces from the IRCache Project
(ircache.net). Looking at one day of traces from 10
proxy servers, we identified 11 frequently-accessed files
that were at least 100,000 bytes.

Each dataset includes 100 transfers with an average
of 100 seconds between them (exponentially distributed).
Thus, the duration of the measurements is 3–4 hours. This
time scale is appropriate for our intended applications,
where we expect historic information to be available, but
not necessarily recent.

The characteristics of the paths we measured are diverse.
Geographical locations include New York, Chicago, Col-
orado, California, Maine, and China. The range of path
lengths is from 12 to 29 hops. The range of rtts is from 7 ms
to 270 ms. The range of bottleneck bandwidths is from 350
Kbps to 100 Mbps. The range of bandwidth-delay prod-
ucts is from 1 to almost 2000 packets. We believe that this
dataset is representative of many paths in the current Inter-
net.

2.1. Application-level measurement

There are three general approaches to network measure-
ment. One is to collect packet-level information some-
where in a network path. Another is to collect kernel-level
information at either the sender or receiver. The third is
to collect information at the application level. The packet
and kernel-level approaches provide the most detailed in-

2

formation. Application-level measurements are easy to im-
plement, and the resulting tools are portable.

We use application-level measurement to develop and
evaluate our model. The analysis we use to estimate the
model’s parameters and make predictions is also applica-
ble to passive, network-level observation of TCP transfers,
but we find that the information we need is available at the
application level, or can be inferred. Furthermore, in cases
where timing inaccuracy is introduced, for example by con-
text switches, these errors can be filtered out. Therefore,
we expect the improvement from kernel- or network-level
measurements to be small.

2.2. Path characteristics

Initially, we expect TCP performance to depend on the
following path characteristics:

• Distribution of rtt, and correlation structure.

• Initial and subsequent congestion windows.

• Bottleneck bandwidth.

• Frequency and performance impact of drops.

• Steady-state throughput.

Some of these, like the initial congestion window, are
easy to measure; others, like bottleneck bandwidth, are
hard. Some have a direct effect on TCP performance; oth-
ers are more indirect. Some may need to be measured ex-
plicitly; some can be abstracted away. The goal of this sec-
tion is to figure out which are which.

The following sections present the steps we used to esti-
mate path characteristics. We start by estimating bottleneck
bandwidth, but we don’t use use this value directly in the
model. Rather, we use it to identify the breaks between
flights of packets. These breaks make it possible to infer
the growth of the congestion window during slow start and
to estimate base rtt (round trip time without queue delays).
Finally, we observe the transition from slow start to steady
state and estimate steady state throughput.

2.3. Bottleneck bandwidth

The idea of using packet spacing to estimate bottle-
neck bandwidth was proposed by Keshav [11] and has
been implemented in various network measurement tools
[3][5][24][12][7].

To implement packet-pair bandwidth estimation with
our measurements, we compute the first difference of the
vectors t and s, yielding dt, which is the interpacket spac-
ing, and ds, the packet sizes. For each packet, we com-
pute the instantaneous bandwidth bwi = dsi/dti. If packets

0 20 40 60 80 100
x (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (b

an
dw

idt
h <

 x)

bandwidth estimates (cdf)

server 7
server 1
server 8

0 20 40 60 80 100
x (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (b

an
dw

idt
h <

 x)

filtered bandwidth estimates (cdf)

server 7
server 1
server 8

Figure 1. Bandwidth estimates before and af-
ter filtering.

leave the bottleneck link back to back, and their spacing
isn’t perturbed by cross traffic, bw estimates the bottleneck
bandwidth of the path.

Current bandwidth estimators are based on the assump-
tion that packets often arrive at the destination with un-
perturbed packet spacing, and that the correct bottleneck
bandwidth is the mode of the distribution of estimates.
Dovrolis et al. warn that under some traffic conditions, the
global mode is determined by cross traffic and not bottle-
neck bandwidth, but they still expect a local mode at the
correct value [7].

For continuous distributions, the notion of a mode is
awkward to define, and methods for identifying modes tend
to be ad hoc. Furthermore, many of our datasets exhibit no
clear modes. Figure 1 shows distributions of bw estimates
from servers with low, medium and high bottleneck band-
widths. Server 7 shows a strong mode around 7 Mbps, but
the other two cases are less promising. Server 8 shows a
mode near 90 Mbps, but the distribution is nearly uniform
from 70 to 100 Mbps. Similarly, the “mode” for Server
1 spans the range from 0 to 100 Mbps. It is difficult to
generate a meaningful bandwidth estimate from these dis-
tributions.

It helps that we have several observations of each path.
Figure 2 plots 30 transfers of a file from a Web server,
showing s versus t. Interpacket spacing is highly variable,
but there are many parallel linear segments that indicate a

3

0 100 200 300 400 500
time (ms)

0

20

40

60

80

100
to

ta
l d

at
a

(1
00

0
B)

server 7 timing chart

Figure 2. Timing charts for 30 HTTP transfers.

common slope. We assume that this characteristic slope
corresponds to the bottleneck bandwidth, and try to esti-
mate it statistically.

Again, we compute the vector of bandwidth estimates
bwi. We divide the vector into overlapping subsequences
with length k, and compute a measure of variability for each
subsequence. The variability of the the jth subsequence is

σ j =
1
k

j+k

∑
i= j

|bwi −m| (1)

where m is the median of the estimates in the subsequence.
The subsequences with the lowest deviation correspond to
the straightest line segments in the timing chart.

We use the variability of the subsequences to filter the
bandwidth estimates. We keep only the n subsequences
with the lowest variability and filter the others, on the as-
sumption that the packets were not sent back-to-back, or
their interpacket spacing has been perturbed. Figure 1 (bot-
tom) shows distributions of the estimates that remain after
filtering with k = 8 and n = 100. In all three cases, the range
of the estimates has been greatly reduced. Furthermore, in
all of our datasets, the mode of the distribution is at or near
the median; thus, we use the median as our bandwidth es-
timate and the interquartile distance as an indicator of its
precision. This filtering technique works well with a range
of values for k and n, and the estimates are insensitive to
these parameters.

We can’t evaluate the accuracy of the estimates, be-
cause we don’t know the actual bottleneck bandwidths of
the paths, but by dividing our datasets into subsets, we can
evaluate repeatability. For each dataset, we generate 5 sub-
sets with 20 randomly-chosen timing charts in each. We
generate a bandwidth estimate for each subset, and com-
pute the range and interquartile distance of the five esti-
mates. Table 1 shows the results. The column labeled “Est
bw” is the estimate based on all 100 timing charts; “Range”
contains the highest and lowest estimates from each subset

Server Est bw Range Interquart
1 24.908 (24.908, 28.014) 1.147%
2 63.656 (63.656, 86.860) 0.701%
3 89.040 (88.996, 90.051) 0.513%
4 92.710 (91.975, 92.712) 0.269%
5 90.677 (89.628, 91.937) 0.687%
6 63.870 (41.590, 84.870) 11.974%
7 6.982 (6.914, 7.075) 0.212%
8 91.261 (91.261, 92.313) 0.190%
9 0.331 (0.331, 0.513) 5.845%

10 9.376 (9.356, 9.412) 0.126%
11 89.474 (89.444, 90.866) 0.669%
12 22.694 (21.129, 33.811) 15.300%
13 88.775 (88.775, 90.142) 0.386%

Table 1. Bandwidth estimates.

of 20 charts; “Interquart” is one-half the distance between
the 25th and 75th percentiles, written as a percentage of the
estimated bw.

In most cases, the range of estimates is small, which
suggests that they are actually measuring the capacity of a
link in the path. However, one weakness of this technique is
that it might be fooled by what Dovrolis et al. call a “post-
narrow capacity mode.”

2.4. Congestion windows

The duration of short TCP transfers tends to be a multi-
ple of the round trip time, where the multiplier depends on
the behavior of the congestion window at the sender. Thus,
in order to predict TCP performance for a given server, we
have to measure its initial and subsequent congestion win-
dows. To do that, we have to be able to identify the end
of each round of packets. The heuristics we use are similar
to those implemented in T-RAT [28]; one difference is that
in our datasets we are able to combine data from multiple
observations of the same path.

To separate arriving packets into rounds, we look at the
vector of interpacket spacing, ds, and identify intervals that
seem to be due to flow and congestion control rather than
queue delays. To do that, it helps to know the base rtt and
the interpacket spacing at the bottleneck. As a coarse esti-
mate of rtt, we collect the measured rtts of the SYN-ACK
and request-reply rounds and compute their 5th percentile.
To get the interpacket spacing at the bottleneck, we use the
bandwidth estimation technique in the previous section and
compute, inter = dsi/bw. Then we compute a logarithmic
transformation of the interarrival time, dt ′i = f (dti), scaled
so that dt ′i = 0 if dti = inter and dt ′i = 1 if dti = rtt. This
transformation gives us a criterion for breaking a timing
chart into rounds; if dt ′i > 0.5, we consider the ith packet
to be the beginning of a new round. During slow start, the
breaks between rounds are obvious and the choice of this

4

0 20 40 60 80
measurement

0

10

20

30

40

ob
se

rv
ed

 w
in

do
w

(p
ac

ke
ts

)
server 7 window sizes

4
3
2
1

0 20 40 60 80
measurement

0

5

10

15

ob
se

rv
ed

 w
in

do
w

(p
ac

ke
ts

)

server 3 window sizes

4
3
2
1

Figure 3. Window sizes for the first four
rounds of slow start.

threshold has little effect. As the congestion window ap-
proaches the bandwidth-delay product, bd p, it becomes in-
creasingly difficult to identify rounds, but at that point we
stop trying to identify rounds and start trying to character-
ize steady-state behavior (Section 3).

Figure 3 shows estimated congestion windows for two
servers. The x axis enumerates 100 transfers; the lines
show the observed window, in packets, for the first 4 rounds
of slow start. The top graph shows a server with the kind
of slow start behavior we expect. The first round is always
2 packets, the second is always 4, and the third is usually
8, except in a few cases where, it seems, a drop causes the
sender to switch to congestion avoidance. By the fourth
round, the congestion window has reached bd p, which is
about 15 packets, and it is no longer possible to identify
the breaks between rounds accurately.

Surprisingly, this behavior is not typical. In most of our
datasets, the behavior of the congestion windows turns out
to be nondeterministic. The bottom graph shows an exam-
ple. The initial congestion window is consistently 2524 B,
a little less than 2 packets. But the second round is some-
times 3 and sometimes 4 packets. The third round is usu-
ally twice the second, but again, it sometimes falls short by
a packet or two. The same thing happens in the next round;

7 10 14 19 26
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (r

tt
<

x)

server 2 rtts (cdf)

syn-ack
req-rep
data

19 46 112 269 647
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (r

tt
<

x)

server 3 rtts (cdf)

syn-ack
req-rep
data

Figure 4. Distributions of round trip times for
SYN-ACK, reply-request, and data rounds.

the congestion window either doubles or nearly doubles,
seemingly at random. Of our 13 datasets, 10 show signif-
icant nondeterminism starting in the second or third round
and continuing in subsequent rounds.

The most likely explanation of this behavior is an inter-
action between the delayed ACK mechanism at the receiver
and the growth of the congestion window at the sender [20].
The consequence of this behavior is that variation in the
growth of the congestion window is a significant source of
variation in transfer time for short transfers.

2.5. Round trip time

For short transfers, the distribution of transfer times de-
pends on the distribution of rtts. A TCP transfer takes at
least two rtts, one for the SYN-ACK round and one for the
request-reply round. In our datasets, we can measure the
rtt of the SYN-ACK and request-reply rounds directly; af-
ter segmenting the timing chart we can estimate the rtts of
the next three data rounds reliably.

Figure 4 shows distributions of rtt for two servers. The
SYN-ACK round sees the shortest rtts because the packet
sizes are minimal and there is no application-level process-
ing at the server. The request-reply round takes the longest,

5

-1 0 1 2
x (log10 ms)

0.5

0.75

0.9

0.975

0.25

0.1

0.025

Pr
 (d

el
ay

 <
 x

)
syn-ack delays (cdf)

server 4
server 10
server 7
server 9

Figure 5. Distributions of delays for the SYN-
ACK round, for four servers. The axes are
transformed so that a lognormal distribution
appears as a straight line.

and has the highest variability, because the application-
level processing at the server is synchronous and may re-
quire disk access. In two of our datasets, the rtts for the
request-reply round are 2–10 times longer than the network
rtt. Figure 4 (bottom) shows an example. Clearly for this
kind of application, a model of TCP performance needs to
include a model of application-level performance.

In many cases the distribution of rtts it is well-described
by a three-parameter lognormal model. For a set of rtti, we
estimate the minimal value, θ = minrtti, and then compute
the delays, delayi = rtti − θ. To see whether the lognor-
mal model is appropriate, we plot the delays on axes trans-
formed so that a lognormal distribution appears as a straight
line. Figure 5 shows examples from four servers with a
range of variability. The distributions are only approxi-
mately straight, but they are close enough that we think the
lognormal parameters summarize them well.

Table 2 shows the estimated parameters for the SYN-
ACK round for each server. The parameters ζ and σ are the
mean and standard deviation of log10 delay. The expected
value, E[delay] is pow(10,(ζ+σ2/2)).

2.6. Correlations

The duration of a short TCP transfer is the sum of a
series of consecutive rtts. Therefore, correlation between
successive rtts affects the distribution of transfer times.

Bolot characterized the relationship between the rtts of
successive packets and found that correlations diminish as
the timescale increases, and disappear when the interval be-
tween packets exceeds 500 ms [3]. Moon et al. estimate the
autocorrelation function for series of RTP packets and find
strong correlations that diminish over larger intervals, again
becoming insignificant beyond 500 ms [19].

Server θ ζ σ E[delay]
ms log10 ms log10 ms ms

1 271.6 1.198 0.545 3.842
2 7.351 -0.379 0.424 0.749
3 14.25 -0.114 0.292 0.931
4 75.24 -0.547 0.316 0.608
5 6.648 -0.253 0.126 0.783
6 6.611 0.087 0.746 1.441
7 24.47 0.505 0.703 2.120
8 87.69 -0.414 0.598 0.790
9 37.59 1.452 0.833 6.038

10 50.94 0.009 0.662 1.256
11 227.4 1.218 0.870 4.937
12 239.6 1.960 0.238 7.303
13 50.22 -0.541 0.301 0.609

Table 2. Estimated parameters for rtts.

Server syn-ack req-rep data 1 data 2
req-rep data 1 data 2 data 3

1 0.203 0.180 0.220 0.364
2 (-0.113) (0.126) (0.076) (-0.108)
3 (-0.082) (-0.131) 0.702 0.770
4 (0.096) 0.265 (-0.034) (-0.008)
5 (0.116) (-0.121) (0.088) (0.092)
6 0.671 0.640 0.736 0.713
7 0.396 0.334 0.310 0.326
8 (0.044) (-0.020) (-0.185) (-0.269)
9 0.721 0.682 0.657 0.638

10 0.184 (0.081) (0.157) (-0.144)
11 0.811 0.745 0.874 0.915
12 0.631 0.625 0.875 0.895
13 (-0.040) (0.101) (-0.047) (-0.043)

Table 3. Correlations in rtt.

By breaking our observations of slow start into a series
of rtts, we can use our measurements to estimate correla-
tions between successive rounds. Table 3 shows estimated
rank correlations for the first four rounds, for each server.
Values in parentheses are statistically insignificant at 90%
confidence. About half of the servers show significant cor-
relations, some larger than 0.8. All significant correlations
are positive, and usually consistent from round to round.

Based on prior work, we might expect higher correla-
tions on paths with shorter rtts, but that is not the case.
There is no apparent relationship between rtt and the de-
gree of correlation. On the other hand, paths with high ex-
pected delays (see E[delay] in Table 2) tend to have high
correlations. This result makes sense, since paths with
longer delays are more likely to have queues that persist
long enough to induce correlations on the relevant time
scale.

6

3. Model

Finally we are ready to assemble a model of TCP perfor-
mance. The model is based on the following state transition
diagram:

ss0 ss1 ss2 ssn

ca

The states labeled ss0 through ssn are slow start states;
the state labeled ca represents congestion avoidance. For a
given transfer, we can infer a sequence of states by comput-
ing observed window sizes, wi (see Section 2.4). All trans-
fers start in ss0. For each round, we compute the ratio of
successive window sizes, wi/wi−1. If this ratio is between
1.5 and 2.0, we move to the next slow start state. If it falls
short of 1.5, we assume that a dropped packet caused the
congestion window to shrink and we move to ca.

In state ca we keep track of the distribution of through-
puts, computed as the average throughput between the end
of the last round of slow start and the end of the timing
chart. Thus, for each timing chart, we compute a series of
states that starts in ss0 and ends when the transfer ends or
reaches congestion avoidance. We estimate the probabil-
ity of each state transition by counting the number of times
each transition occurs in the dataset.

3.1. Estimating transfer times

In previous sections, we have shown how to use a set of
timing charts to estimate the parameters of a network path.
These parameters are:

• The distribution of rtts for the SYN-ACK round, the
request-reply round, and the first data round.

• The correlations between successive rounds of rtts.

• The state transition probabilities.

• The distribution of window sizes for each slow start
state.

• The distribution of throughputs in steady state.

These parameters are sufficient to estimate the distribu-
tion of transfer times for a given transfer size. Here is the
algorithm:

1. Set stotal , the total data received, to 0. Choose rtt0
from the distribution of SYN-ACK rtts and rtt1 from
the distribution of request-reply rtts, with appropriate
correlation. Set ttotal , the total elapsed time, to rtt0 +
rtt1. Start in state ss0.

2. Using the state transition probabilities, choose the
next state at random.

3. If the new state is ca, choose throughput at random
from the distribution of throughputs. Compute the re-
maining time trem = (s−stotal)/throughput and return
the sum trem + ttotal .

4. Choose a window size, win, from the distribution of
window sizes for the current state. If stotal + win > s,
the transfer completes during this round. Return ttotal .

5. Update stotal = stotal + win. Choose rtti from the dis-
tribution of data rtts (with appropriate correlation) and
update ttotal = ttotal + rtti.

6. Go to step 2.

By repeating this process, we estimate the distribution
of transfer times.

4. Validation

To test the model, we divide each dataset randomly into
two sets of 50 transfers. We use the first subset to estimate
parameters and generate a distribution of transfer times for
a range of sizes. Then we compare the predicted times with
the times from the second subset.

Figure 6 shows the results for four servers we chose to
represent a variety of path characteristics. For Server 1,
the distribution of transfer times is multi-modal (for some
sizes) because the characteristics of the path changed dur-
ing the measurement. For Server 2, the transfer time is de-
termined by the distribution of rtts and the distributions are
multi-modal because the growth of the congestion window
is nondeterministic. For Server 9, many transfers enter con-
gestion avoidance almost immediately; the range of trans-
fer times is unusually wide, but the model describes the
distributions reasonably well. For Server 10, performance
is generally consistent and the range of transfer times is rel-
atively narrow. In each of these cases, the model includes
the features necessary to describe the distribution of trans-
fer times, including the location and probability density of
multiple modes.

In two cases, the model is less accurate. On Server 3
there is an application-level delay after the first 40 pack-
ets that is not included in the model. Server 6, it turns
out, is actually three servers with different path charac-
teristics. Subsequent requests for the same URL are han-
dled by different servers, due to changes in DNS infor-
mation caused by distributed content delivery mechanisms
like those used by Akamai Technologies and Speedera Net-
works. Although the shape of the predicted distribution
doesn’t match the measured distribution, its location and
variability are correct.

7

563 1119 2227 4431 8815
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (t

ra
ns

fe
r t

im
e

<
x)

server 1 tts (cdf)

1000
5000
20000
50000
100000

18 29 46 74 119
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (t

ra
ns

fe
r t

im
e

<
x)

server 2 tts (cdf)

1000
5000
20000
50000
100000

121 419 1450 5011 17317
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (t

ra
ns

fe
r t

im
e

<
x)

server 9 tts (cdf)

1000
5000
20000
50000
100000

119 245 504 1036 2130
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
 (t

ra
ns

fe
r t

im
e

<
x)

server 10 tts (cdf)

1000
5000
20000
50000
100000

Figure 6. Distributions of predicted (thick,
gray lines) and actual transfer times (thin,
darker lines).

Server Error Error
(untruncated) (truncated)

1 0.804 1.044
2 0.771 3.475
3 3.490 8.716
4 0.087 0.303
5 2.639 1.871
6 3.682 6.802
7 0.937 0.627
8 0.265 0.459
9 1.938 2.194

10 1.194 2.023
11 1.237 2.657
12 0.782 0.803
13 0.697 2.254

Table 4. Error metrics for predictions based
on truncated and untruncated data.

We conclude that the model’s features are sufficient to
describe the behavior of the paths in our datasets, with two
exceptions where the predictions are less accurate. These
exceptions remind us of a fundamental limitation of model-
based approaches to performance prediction: the complex-
ity of the real world.

4.1. Extrapolating from short transfers

This limitation raises the question whether it would be
better to use historical information directly rather than to
estimate the parameters of the model and then use the
model to generate predictions. If nothing else, this ap-
proach would be simpler. He et al. address this question,
and conclude that history-based methods are as good, and
under some conditions better than, model-based methods
[10]. But an advantage of model-based methods is that they
can make predictions about transfer sizes that have not oc-
curred in the past. In particular, they can use measurements
of short transfers to predict the duration of long transfers.

To test this capability, we use datasets truncated after the
first 50,000 bytes to estimate the parameters of our model,
then we use the model to predict the duration of 100,000
byte transfers. Again, we divide the datasets in half, using
50 observations to build the model and the other 50 to test
it. To measure prediction error, we use the normalized area
between the predicted and actual distributions, computed
by summing over percentile p:

99

∑
p=1

|F−1
p (p)−F−1

a (p)|

F−1
a (p)

where Fp and Fa are the actual and predicted distribution
functions. This error metric doesn’t mean much in absolute

8

terms; we use it here to compare predictions made with the
truncated datasets to predictions made with the complete
datasets.

Table 4 shows the results. For most servers, the pre-
dictions based on censored data are either a little worse or,
by chance, a little better than the predictions that use all
the data. When the predictions fail, it is usually because
the truncated datasets don’t show the transition from slow
start to steady state. We conclude that our model can be
used to predict the performance of long transfers as long as
we have observed at least a few observations that are long
enough to leave slow start.

5. Conclusions

Previous models of TCP performance have focused on
either short transfers or steady state behavior, and most pro-
duce single-value predictions rather than intervals or distri-
butions. The goal of this project is to evaluate the feasibility
of a model-based approach to predicting the distribution of
transfer times for the entire range of transfer sizes, includ-
ing the transition from slow start to steady state.

Some of our conclusions are bad news: TCP perfor-
mance depends on many network characteristics, some of
which are hard to measure. A model that captures all of
these characteristics has many parameters, which means
that it requires a significant history of observations.

On the positive side, we show that the most important
parameters can be estimated with simple, application-level
measurements, or with passive measurements, and we ar-
gue that in our target environments it is reasonable to ex-
pect the information we need to be available.

We have developed a model that tries to capture the
parameters that have the strongest effect on performance
while abstracting away characteristics that have weaker ef-
fects. Features of this model include:

• It describes both slow start and steady-state behavior,
so it applies to a wide range of transfer sizes.

• Rather than estimate drop rates explicitly, it incorpo-
rates both exogenous and endogenous drops in an ar-
ray of state transition probabilities.

• It includes correlations between successive rtts, which
is important on paths where the expected queue delays
are large compared to rtt.

• It includes nondeterminism in the growth of the con-
gestion window, which has a strong effect on the per-
formance of many of the paths we observed.

• It abstracts away implementation details, so it is ap-
plicable to all current and most conceivable variants
of TCP.

We validate this model with measurements from a small
but diverse set of network paths. We show that the features
included in the model are sufficient to capture the loca-
tion and shape of the distribution of transfer times, even in
cases where the distribution is multi-modal. Also, we show
that the model is able to extrapolate from observations of
short transfers to predict the performance of long transfers,
which is an advantage over history-based approaches.

5.1. Limitations

Application-level measurements are easy to implement,
and tools that use them are portable. The price of this con-
venience is that some of the things we would like to mea-
sure, like window sizes, are not directly visible to an appli-
cation. We have shown that it is possible to infer this infor-
mation with acceptable accuracy, but there are two parts of
the model that would benefit from network-level informa-
tion.

The first is identifying dropped packets. The heuristics
our model uses are successful in the sense that they iden-
tify characteristics in a timing chart that indicate a dropped
packet, but without network-level traces we can’t assess
their accuracy.

The second limitation is the difficulty of distinguishing
server delays from network delays. For the HTTP transfers
we looked at, most server delays occur during the request-
reply round; after that, the servers kept up with the network.
Other kinds of TCP transfers, like ftp, may be similar, but
there are other cases where a more detailed model of server
performance may be necessary.

Finally, an aspect of TCP performance that we left out
of the model is the effect of dropped packets at the end of
a transfer. In our datasets, most drops were caught by the
Fast Retransmit mechanism, so they tended not to impose
long delays, except indirectly by reducing the congestion
window. When a packet is dropped at the end of a trans-
fer, there may not be enough ACK packets to trigger Fast
Retransmit, and a transfer may suffer a timeout. In our
datasets, these events are rare, but their effect is significant.

References

[1] C. Barakat and E. Altman. Performance of short TCP trans-
fers. In NETWORKING, volume 1815 of Lecture Notes in
Computer Science, pages 567–579. Springer, 2000.

[2] P. Barford, A. Bestavros, A. Bradley, and M. Crovella.
Changes in web client access patterns: Characteristics and
caching implications. World Wide Web, Special Issue on
Characterization and Performance Evaluation, 2:15–28,
1999.

[3] J.-C. Bolot. Characterizing end-to-end packet delay and
loss in the internet. Journal of High Speed Networks,
2(3):289–298, September 1993.

9

[4] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
latency. In INFOCOM (3), pages 1742–1751, 2000.

[5] R. Carter and M. Crovella. Measuring bottleneck link speed
in packet-switched networks. Technical Report TR-1996-
006, Computer Science Dept., Boston University, 1996.

[6] C. Casetti and M. Meo. A new approach to model the sta-
tionary behavior of TCP connections. In INFOCOM (1),
pages 367–375, 2000.

[7] C. Dovrolis, P. Ramanathan, and D. Moore. Packet disper-
sion techniques and capacity estimation. IEEE/ACM Trans-
actions on Networking, December 2004.

[8] N. Ehsan and M. Liu. Analysis of TCP transient behavior
and its effect on file transfer latency. In IEEE ICC, May
2003.

[9] S. Floyd. Connections with multiple congested gateways
in packet-switched networks, Part 1: One-way traffic. ACM
Computer Communication Review, 21(5):30–47, Oct. 1991.

[10] Q. He, C. Dovrolis, and M. Ammar. Prediction of TCP
throughput: Model-based and history-based methods. In
Sigmetrics, 2005.

[11] S. Keshav. A control-theoretic approach to flow control. In
SIGCOMM, pages 3–15, 1991.

[12] K. Lai and M. Baker. Measuring bandwidth. In IEEE IN-
FOCOM, pages 235–245, 1999.

[13] T. Lakshman and U. Madhow. The performance of
TCP/IP for networks with high bandwidth-delay products
and random loss. IEEE/ACM Transactions on Networking,
5(3):336–350, July 1997.

[14] T. V. Lakshman, U. Madhow, and B. Suter. Window-based
error recovery and flow control with a slow acknowledge-
ment channel: A study of TCP/IP performance. In INFO-
COM (3), pages 1199–1209, 1997.

[15] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic
behavior of the TCP congestion avoidance algorithm. Com-
puter Communications Review, 27(3), 1997.

[16] M. Mellia, I. Stoica, and H. Zhang. TCP model for short
lived flows. IEEE Communications Letters, 6(2):85–88,
February 2002.

[17] A. Misra and T. J. Ott. The window distribution of ideal-
ized TCP congestion avoidance with variable packet loss.
In INFOCOM (3), pages 1564–1572, 1999.

[18] V. Misra, W. Gong, and D. Towsley. Stochastic differential
equation modeling and analysis of TCP windowsize behav-
ior. Technical Report ECE-TR-CCS-99-10-01, University
of Massachusetts, 1999.

[19] S. B. Moon, J. Kurose, P. Skelly, and D. Towsley. Cor-
relation of packet delay and loss in the Internet. Techni-
cal Report UM-CS-1998-011, University of Massachusetts,
March 1998.

[20] W. Noureddine and F. Tobagi. The transmission control pro-
tocol. Technical report, Stanford University, July 2002.

[21] T. Ott, J. Kemperman, and M. Mathis. Window size be-
havior in TCP/IP with constant loss probability. In IEEE
HPCS, June 1997.

[22] J. Padhye, V. Firoiu, and D. Towsley. A stochastic model
of TCP Reno congestion avoidance and control. Technical
Report CMPSCI 99-02, University of Massachusetts, 1999.

[23] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling
TCP throughput: A simple model and its empirical valida-
tion. In SIGCOMM, pages 303–314, 1998.

[24] V. Paxson. End-to-end Internet packet dynamics.
IEEE/ACM Transactions on Networking, 7(3):277–292,
1999.

[25] B. Sikdar, S. Kalyanaraman, and K. Vastola. Analytic
models for the latency and steady-state throughput of TCP
Tahoe, Reno and SACK. In IEEE GLOBECOM, pages
1781–1787, November 2001.

[26] B. Sikdar, S. Kalyanaraman, and K. Vastola. TCP Reno
with random losses: Latency, throughput and sensitivity
analysis. In IEEE IPCCC, pages 188–195, April 2001.

[27] R. Wolski, N. T. Spring, and J. Hayes. The Network
Weather Service: a distributed resource performance fore-
casting service for metacomputing. Future Generation
Computer Systems, 15(5–6):757–768, 1999.

[28] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
characteristics and origins of Internet flow rates. In SIG-
COMM, 2002.

10

