
Modeling TCP Performance

Allen B. Downey

Boston University

1



TCP Performance

Goal: model and predict transfer times.

� Interactive applications.

• Predict duration of downloads.
• Select mirror site.

� Distributed applications.

• Resource selection.
• Scheduling.

2



Goals

Complementary questions:

� What do we need to
know about a
network path?

� What can we
measure about a
network path?

Complementary goals:

� Maximize accuracy. � Minimize
measurement.

3



TCP Basics

� Most network transfers managed by TCP.

� Reliable delivery by ACK-retransmit.

� Window-based: sender limits data “in flight”.

� Flow control: receiver advertises available buffer
space.

� Congestion control:

• Slow start to discover capacity.
• Congestion avoidance for stability.

4



TCP transfer

(1 packet / 2 ms)

avoidance
congestion

avoidance
congestion

start
slow

start
slow

start
slow

ACK

Reply

Request

SYN−ACK
SYN

drop

� Packet-level
view of an
HTTP
request.

5



TCP transfer

drop

cw1

cw2

cw3

(1 packet / ms)

(6 packets)

(1 packet / 2ms)

(12 ms)
rtt

send ratebottleneck
bandwidth

bdp

� Send rate
often faster
than bw.

� Packets
queue,
maybe drop,
at
bottleneck.

6



Basic performance model

0 200 400 600
transfer size (1000 B)

500

1000

1500

tr
a

n
s
fe

r 
ti
m

e
 (

m
s
)

HTTP transfer times

� Short
transfers
depend on
rtt and cw.

� Long
transfers
depend on
duration of
slow start
and
throughput.

7



Path parameters

So what do we need to know?

� Distribution of rtt.

� cw1, cw2, cw3 ...

� Bottleneck bandwidth (and bdp).

� Effective throughput (distribution?)

Can we measure these parameters?

8



Measurement

� Application-level HTTP timing (instrumented wget).

set the timer
connect (socket)
record elapsed time
write (request)
while (more data) {

select (socket)
record elapsed time
read (buffer)
record amount of data

}

9



Timing chart

0 100 200 300 400
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 7 timing chart
� Plot bytes read

vs. time.

� Immediately, we
can estimate rtt,
cw, bw and bdp!

10



Measurement

� Measurements:

• 100,000 byte transfers.
• 100 transfers, with 100s between.

� HTTP downloads:

• 2 URLs provided by collaborators.
• 11 URLs culled from proxy cache logs.

� Diverse network paths:

• rtt from 7 to 270 ms.
• bw from 0.350 to 100 Mbps.

11



Timing chart

0 20 40 60 80
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 2 timing chart
� rtt ≈ 7 ms, with

some variability.

� cw =
2, 4, 8, 12, 12...

� Some dropped
packets.

12



Timing chart

0 100 200 300 400 500
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 7 timing chart
� rtt ≈ 25 ms.

� characteristic
slope ≈ 7 Mbps.

� bdp ≈ 11
packets.

� cw = 2, 4, 8,∞

� How can cw
exceed bdp?

13



Endogenous drops

Conventional wisdom: if cw > bdp, TCP induces
endogenous drops:

� Brakmo and Peterson, 1995: “[TCP] needs to create losses to
find the available bandwidth...”
“... if the threshold window is set too large, the congestion
window will grow until the available bandwidth is exceeded,
resulting in losses...”

� Hoe, 1996: “... the sender usually ends up outputting too many
packets too quickly and thus losing multiple packets in the same
window.”

14



Endogenous drops

� Allman and Paxson, 1999: “For TCP, this estimate is currently
made by exponentially increasing the sending rate until
experiencing packet loss.”

� Barakat and Altman, 2000: “Due to the fast window increase,
[slow start] overloads the network and causes many losses.”

Fortunately, this is not true.

15



Self-clocking

Figure 1 from Jacobson,

ack spacing
at the
receiver

ack spacing
at the
sender

Sender Receiver

packet
spacing
at the
bottleneck

"Congestion Avoidance and Control," 1988.

� bottleneck bw ⇒

receive rate ⇒

ACK rate ⇒

send rate

� Endogenous
drops not
inevitable.

� If no exogenous
drops, cw grows
arbitrarily.

16



Conditions for self-clocking

S

t = 10, cw = 16

S

t = 8, cw = 16

S

t = 0, cw = 8

R

R

R � cw∗ is the last
window smaller
than bdp.

� During transition,
packets
accumulate in
queue.

� Need queue
capacity
ssthresh− bdp or
bdp − cw∗.

17



Self-clocking

0 200 400 600
time (ms)

0

50

100

150

200

250

s
iz

e
 (

1
0

0
0

 B
)

server 10 timing chart
� 10 of 13 either

buffer-limited or
end in slow start.

� Other 3 show
self-clocking.

� Here, bdp ≈ 41
packets,
cw > 100.

18



Self-clocking

0 2000 4000 6000
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 9 timing chart
� Some

self-clocking,
some congestion
avoidance.

� Large variability
in steady-state
throughput.

19



The future?

0 1000 2000 3000 4000
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 1 timing chart
� High bw, high

rtt, bdp = 620
packets.

� Most transfers
never leave slow
start.

� The ones that do
never catch up.

� Variability in rtt
< variability due
to congestion
avoidance.

20



Steady-state behavior

So what do we need to know?

� Transition from slow start:

• Exogenous drop rate, p.
• Endogenous drop rate = f(cw)

• Slow start theshhold, ssthresh.
• Buffer size at sender.

� Three kinds of steady state:

• Congestion avoidance, buffer-limited and
self-clocking.

21



State transition model

ss0 ss1 ss2 ssn

ca scbl

� Drop rates,
ssthresh, and
buffer size implicit
as state transition
probabilities.

� How to estimate
probabilities?

22



Estimating parameters

Just do statistically what we’ve been doing visually.

� Divide timing chart into rounds.

� Measure window size for each round.

� Pattern match on window sizes:

• 2, 4, 8, 16, 32 ...
• 2, 4, 6, 4, 5, 6 ...
• 2, 4, 6, (long pause) 11, 6 ...
• 3, 6, 12, 15, 15, 15 ...
• 3, 6, 12, 51, 17, 63 ...

23



Estimating Parameters

� Distribution of rtt.

� Window sizes for ssi and bl.

� Distribution of throughputs for ca and sc.

� State transition probabilities.

ss0 ss1 ss2 ssn

ca scbl

24



Window sizes

0 20 40 60 80
measurement

0

10

20

30

40

o
b
s
e
rv

e
d
 w

in
d
o
w

 (
p
a
c
k
e
ts

)

server 7 window sizes

4
3
2
1

� This is the sort
of thing we
expect.

� Too bad it’s the
exception.

25



Window sizes

0 20 40 60 80
measurement

0

5

10

15

o
b
s
e
rv

e
d
 w

in
d
o
w

 (
p
a
c
k
e
ts

)

server 3 window sizes

4
3
2
1

� cw2 is
sometimes 3,
sometimes 4.

� cwn+1 is
2 · cwn − m,
where m is
0, 1, 2, ...

� 10 out of 13 are
similar.

26



Non-deterministic slow start

� Sender increases cw by one packet each new ACK.

� Receiver usually sends one ACK per two packets.

cwn+1 = 1.5 · cwn

� So, receivers have heuristics to ACK every packet
during slow start.

1.5 · cwn ≤ cwn+1 ≤ 2.0 · cwn

� Timer bounds ACK delay. Introduces
nondeterminism?

� Implementation dependent. (Linux kernel version
2.4.18-3)

27



Estimating Parameters

� Distribution of rtt.

� Window sizes for ssi and bl.

� Distribution of throughputs for ca and sc.

� State transition probabilities.

ss0 ss1 ss2 ssn

ca scbl

28



Estimating Parameters

� Distribution of rtt.

� Window size distributions for ssi and bl.

� Distribution of throughputs for ca and sc.

� State transition probabilities.

ss0 ss1 ss2 ssn

ca scbl

29



Generating predictions

Given size s...

1. Initialize state = ss0, stotal = 0, ttotal = rtt0 + rtt1.

2. Choose a state transition, state = Sstate.

3. If state = ca or sc, throughput = Tstate,
trem = (s − stotal)/throughput, return ttotal + trem.

4. win = Wstate, stotal = stotal + win.

5. If stotal > s, return ttotal.

6. rtt = Rstate, ttotal = ttotal + rtt.

7. Go to step 2.

30



Validation

� Randomly partition 2 datasets of 50 measurements.

� Estimate parameters and generate distributions from
one subset.

� Compare to actual times from other subset.
t(s) =time until receive sth byte.

� Agreement indicates that the model is sufficiently
detailed, and that the estimated parameters are
consistent.

31



Example #1

62 119 231 447 866
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 7 tts (cdf)

1000
5000
20000
50000
100000

� Deterministic
slow start.

� Most transfers
self-clocking.

32



Example #2

563 1119 2227 4431 8815
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 1 tts (cdf)

1000
5000
20000
50000
100000

� Nondeterministic
slow start ⇒
multimodal
distributions.

� Modes at
multiples of rtt.

33



Example #3

18 29 46 74 119
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 2 tts (cdf)

1000
5000
20000
50000
100000

� Buffer-limited.

34



Example #4

121 419 1450 5011 17317
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 9 tts (cdf)

1000
5000
20000
50000
100000

� Mostly
congestion
avoidance, some
self-clocking.

� Underestimating
variability?

35



Evil case #1

101 190 355 665 1244
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 3 tts (cdf)

1000
5000
20000
50000
100000

� Up to 50,000
bytes, not bad.

� Anything over
60,000, way off!

36



Server performance

0 200 400 600 800
time (ms)

0

50

100

150

s
iz

e
 (

1
0

0
0

 B
)

server 3 timing chart
� 50 ms delay

after 40 packets.

� Model includes
initial processing
at server.

� After that,
assumes that
servers keep up.

37



Evil case #2

19 41 91 201 443
x (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
 <

 x
)

server 6 tts (cdf)

1000
5000
20000
50000
100000

� Actual times are
sharply
multimodal.

� Model smoothes
the modes.

38



Multiple paths

0 100 200 300 400
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 6 timing chart
� Akamai-style

content delivery
⇒ multimodal
rtt.

� Model includes
correlation, but
not the right
correlation
structure.

39



Headlines

� Model includes three steady-state behaviors.

• Author claims good agreement with
measurements.

� Endogenous drop risk exaggerated.

• With enough queue capacity, self-clocking works!

� Non-deterministic slow start sighted.

• TCP characteristic or Linux bug?

40



Future work

� Do short transfers predict long transfer performance?

� Put model into predictive structure.

� TCP as bandwidth estimation tool?

� Application-level server tuning.

� Application-level TCP pacing.

41



Had enough?

� Full paper and additional data available from

http://allendowney.com

� Contact me at

downey@allendowney.com

42



Future work

� Do short transfers predict long transfer performance?

� Put model into predictive structure.

� TCP as bandwidth estimation tool?

� Application-level server tuning.

� Application-level TCP pacing.

43



So far, mostly good

First test: 100K measurements predict 100K transfers.

� The right location.

� The right variability.

� Usually the right shape.

� Tail behavior?

Stronger test: do 50K measurements predict 100K
transfers?

44



More validation

2.4 2.6 2.8 3.0
x (log10 ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
s
 <

 x
)

server 7 tts (cdf)

100000

� Censor data at
50,000 bytes,
predict 100,000
bytes.

� Results good, if
we see the end
of slow start.

45



More validation

1.8 2.0
x (log10 ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(t
ra

n
s
fe

r 
ti
m

e
s
 <

 x
)

server 2 tts (cdf)

100000

� Pretty bad, if we
don’t get a clear
view of
steady-state
behavior.

� In this case, bl
looks like ss4.

46



Prediction

0 20 40 60 80
measurement

0

5

10

15

o
b
s
e
rv

e
d
 w

in
d
o
w

 (
p
a
c
k
e
ts

)

server 1 window sizes

4
3
2
1

� Need to collect
data “long
enough”.

� Capture
short-term
variation.

� Identify
long-term shifts
(path changes).

� Embed model in
NWS-like
structure.

47



Bandwidth estimation

0 20 40 60 80 100
x (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(b
a

n
d

w
id

th
 <

 x
)

bandwidth estimates (cdf)

server 7
server 1
server 8

� Lots of prior
work on packet
pair bw
estimation.

� Assumption:
bottleneck bw is
at least a local
mode in
distribution of
pair-wise
estimates.

48



Bandwidth estimation

0 100 200 300 400 500
time (ms)

0

20

40

60

80

100

s
iz

e
 (

1
0

0
0

 B
)

server 7 timing chart
� Visually, the

characteristic
slope seems
obvious.

� Statistical filter:
look for the
straightest
k-packet
sequences.

� Keep n
sequences with
lowest variability.

49



Bandwidth estimation

0 20 40 60 80 100
x (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
r 

(b
a

n
d

w
id

th
 <

 x
)

filtered bandwidth estimates (cdf)

server 7
server 1
server 8

� Estimates much
more repeatable.

� More accurate?

50



Server tuning

� Bigger bdp increases demand for send buffers.

� Vast majority of connections either ss or bl.

� Use performance model for:

• Acceleration: faster slow start, dynamic ssthresh.
• Allocation: bigger buffers for connections that can

use them.
• Scheduling: bigger-shorter vs. smaller-longer.

51



TCP Pacing

� Good: self-clocking achieves rate-based transmission
in a window-based mechanism.

� Bad: vast majority of connections either ss or bl.

� Packets are sent faster than bw.

� Unnecessary burstiness, queueing at bottleneck.

� TCP pacing: good for you, good for the network. a

a
Your mileage may vary. See Aggarwal, Savage and Anderson, “Understanding the Performance of TCP Pacing.”

52



TCP Pacing

0 2000 4000 6000
time (ms)

0

100

200

300

400

500

s
iz

e
 (

1
0

0
0

 B
)

server 1 timing chart
� Application rate

⇒ advertised
window ⇒ send
rate.

� Here, rate is
static.

� tt should be no
worse.

� Better
queueing/drop
behavior.

53



Prior work

� Lots of work on congestion avoidance.

E[throughput] = f(rtt, p)

• Assume throughput is congestion-limited.
• Various drop models: usually exogenous.

� Some work on slow start.

cdftt = f(rtt, p)

• Known cw1, cw2 ...
• Again, drop rate is exogenous.

54


	TCP Performance
	Goals
	TCP Basics
	TCP transfer
	TCP transfer
	Basic performance model
	Path parameters
	Measurement
	Timing chart
	Measurement
	Timing chart
	Timing chart
	Endogenous drops
	Endogenous drops
	Self-clocking
	Conditions for self-clocking
	Self-clocking
	Self-clocking
	The future?
	Steady-state behavior
	State transition model
	Estimating parameters
	Estimating Parameters
	Window sizes
	Window sizes
	Non-deterministic slow start
	Estimating Parameters
	Estimating Parameters
	Generating predictions
	Validation
	Example #1
	Example #2
	Example #3
	Example #4
	Evil case #1
	Server performance
	Evil case #2
	Multiple paths
	Headlines
	Future work
	Had enough?
	Future work
	So far, mostly good
	More validation
	More validation
	Prediction
	Bandwidth estimation
	Bandwidth estimation
	Bandwidth estimation
	Server tuning
	TCP Pacing
	TCP Pacing
	Prior work

