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Abstract

The conventional method for generating a pseudorandom floating-
point value is to generate a pseudorandom integer and divide by a constant
(using floating-point arithmetic). The problems with this approach are
(1) the possible outcomes are a small subset of the representable floating-
point values (about 7% for a typical implementation) and (2) subsequent
transformation of these values may not yield the expected distributions
(for example, applying a log transformation to numbers from a uniform
distribution does not yield an exponential distribution as it would in real
arithmetic). We present a new algorithm with the following properties:
(1) it can produce every representable floating-point value in a given range,
and (2) it is efficient in both time and use of pseudorandom bits.

1 Introduction

There has been much work on the problem of generating pseudo-random integers
with statistical properties appropriate for such applications as Monte Carlo
simulation and stochastic modelling. In general, though, this work has given
little attention to the problem of generating random floating-point values.

(I would like to write a section here explaining the impact of my algorithm
on some real applications, assuming it has one – in the meantime, I don’t have
much to say, other than to explain the algorithm.)

2 Conventional methods

The usual way to generate random floating-point values uniformly-distributed in
the range [0.0, 1.0] is to generate a random integer in the range [0,m], convert
the integer to floating-point, and then divide by m − 1 using floating-point
arithmetic.

To illustrate the problems with this approach, we will consider the following
example.
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#define RAND_MAX 2147483647.0 /* = 2^31 - 1 */

int x = random ();

float f = (float) x / RAND_MAX;

where random() returns a random integer in the range [0, 231
− 1], the type

int indicates a 32-bit, 2’s complement number and the type float indicates an
IEEE Standard single-precision floating-point number.

There are several problems with this approach, the first of which is a matter
of implementation, but the latter of which are fundamental algorithmic flaws.

The implementation issue is that the number 231
− 1 is too large to be

represented exactly in single-precision. The nearest representable values are
231 = 2147483648 above and 2147483520 below. Since the denominator is
rounded up, the mean of this distribution will be very slightly too low.

But this is not a serious problem; the error is less than 5 parts in 10 tril-
lion, which is acceptable for most applications. Furthermore, this error can be
eliminated by performing the division in double-precision arithmetic, as in:

#define RAND_MAX 2147483647.0

int x = random ();

float f = (double) x / RAND_MAX;

The algorithmic flaw is more serious and harder to fix. Generating random
floating-point values by division makes it impossible to produce the vast major-
ity of floating-point values in the range. Of the 230 representable floating-point
values between 0.0 and 1.0, this method can produce only about 226. This esti-
mate is based on the number of representable floating point values in the range
[0, 231]. The integers from 1 to 224 can be represented exactly. In each binade
from 224 to 231, there are 223 representable values. So the total is 224 + 7 · 223

which is 226.17. All representable values in the range can be generated by this
algorithm. So about 7% of the values in the range can occur.

Figure 1 illustrates a mapping between equally-spaced real numbers and the
representable floating-point values. The floating-point values are not equally-
spaced on the number line. In the range of small values, the floating-point
numbers are much denser than the real values we are trying to represent; thus,
only a few of the floating-point values will ever be selected. In the range of large
values, the floating-point numbers are much sparser than the real values; thus,
many real values will be rounded to the same floating-point value.

2.1 Transformations

One common way to generate exponentially-distributed numbers is to choose
numbers from a random distribution and apply a logarithmic transformation
[Press et al.]. Example:

float f = (double) random () / RAND_MAX;

float e = -log (f);
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equally-spaced rational numbers

representable floating-point numbers

Figure 1: Mapping equally-spaced real numbers onto the representable floating-
point values.

One problem with this approach is that since f may be equal to zero, the
call to log() may result in a domain error. The more important problem is that
since the smallest value for f is ∼ 2−31, the largest value for e is ∼ 9.3. Of
course, a real exponential distribution can produce arbitrarily large values.

The algorithm presented in this paper can produce the smallest representable
floating-point value, which is ∼ 2−149 in single precision. Thus, if the loga-
rithmic transformation is applied to these values, the result is an exponential
distribution truncated at ∼ 44.9.

Although this is an improvement, it still does not satisfy the goal of produc-
ing any representable value in the range [0,∞].

(I have given some thought to fixing this problem, but so far I have hit a
wall).

3 Proposed algorithm

The goal of this algorithm is to generate uniformly-distributed pseudo-random
floating-point values in the range [0, 1], assuming that we are given an algorithm
for generating pseudo-random bits. These bits should have probability 50% of
being in each of two states, and be statistically independent.

Our approach is to choose floating-point values in the range such that the
probability that a given value is chosen is proportional to the distance between
it and its two neighbors. The algorithm works in two steps, first choosing the
exponent range of the value, then choosing the mantissa.

We will use a simple example to demonstrate the principle, then show an
implementation for IEEE Standard single-precision floating-point values.

3.1 Example

Figure 2 shows the set of representable values for a small floating-point repre-
sentation:
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Figure 2: The representable values for a small floating-point representation.

Figure 3: Representable values in an exponent range, and their probability of
being chosen.

x = 1.dd × 2exp

where dd represents a two-digit mantissa and exp can be one of 1, 2, 3. The
exponent exp = 0 is special, indicating a subnormal value. These values are
interpreted as:

x = 0.dd × 2exp

The key observation here is that the exponent ranges shown in Figure 2
balance on the center-point 4.0 (marked with a triangular fulcrum). Thus if a
random value were chosen in the range [0, 8] the probability that the value will
be in the highest exponent range is 50%. This property is true for any range of
floating-point values with radix 2 (although a small adjustment is required in
the absence of subnormals).

Thus, the algorithm for choosing an exponent range is:

1. Choose a single random bit.

2. If it is 0, choose the largest exponent (the area to the right of the fulcrum).

3. Otherwise, choose an exponent from the ranges to the left of the fulcrum.

The number of random bits generated may be as large as the difference
between the largest and smallest exponent in the range, but on average the
number of bits is less than 2.

Having chosen an exponent range, we now have to choose among the rep-
resentable values within that range. Again, the goal is to choose each value
with probability proportional to the distance between it and its two neighbors.
Choosing two random bits almost satisfies this goal; with a small adjustment it
can be made correct.
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Figure 4: Probability of selecting a given floating-point value, before the shift.

Figure 5: The corrected probability for each value is proportional to the distance
between the value and its two neighbors.

Figure 3 shows the four representable values in an exponent range. The
rounded rectangles indicate the area associated with each value — the proba-
bility of choosing a particular value is proportional to the area of its rectangle.

Choosing a random two-bit mantissa would give equal probability to all
values in the exponent range. This is almost correct, except for the first point
in the range, which should be chosen half as often, and the first point in the
next exponent range, which will never be chosen, but which should be chosen
as often as the first.

The simple solution, then, is:

1. Choose a random mantissa.

2. If it is 0, then with probability 50% increase the exponent by one.

Figure 4 shows a set of values spanning several exponent ranges. The height
of each column indicates the probability that a given value will be chosen. The
initial column heights indicate the probabilities that would result without Step
2, above. The arrows indicate the shift in probability that results from Step 2.

Figure 5 shows the outcome of this shift. As desired, the probability that
each value is chosen is proportional to the distance between it and its two
neighbors.

4 Implementation

The following code shows an implementation of the algorithm presented in the
previous section. It is intended to be clear, not efficient. Obvious optimizations
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include inlining get bit() and using the 8 random bits that are leftover each
time we generate a random mantissa.

/* BOX: this union is used to access the bits

of floating-point values */

typedef union box {

float f;

int i;

} Box;

/* GET_BIT: returns a random bit. For efficiency,

bits are generated 31 at a time using the

C library function random () */

int get_bit ()

{

int bit;

static bits = 0;

static x;

if (bits == 0) {

x = random();

bits = 31;

}

bit = x & 1;

x = x >> 1;

bits--;

return bit;

}

/* RANDF: returns a random floating-point

number in the range (0, 1),

including 0.0, subnormals, and 1.0 */

float randf ()

{

int x;

int mant, exp, high_exp, low_exp;

Box low, h, ans;

low.f = 0.0;

high.f = 1.0;
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/* extract the exponent fields from low and high */

low_exp = (low.i >> 23) & 0xFF;

high_exp = (high.i >> 23) & 0xFF;

/* choose random bits and decrement exp until a 1 appears.

the reason for subracting one from high_exp is left

as an exercise for the reader */

for (exp = high_exp-1; exp > low_exp; exp--) {

if (get_bit()) break;

}

/* choose a random 23-bit mantissa */

mant = random() & 0x7FFFFF;

/* if the mantissa is zero, half the time we should move

to the next exponent range */

if (mant == 0 && get_bit()) exp++;

/* combine the exponent and the mantissa */

ans.i = (exp << 23) | mant;

return ans.f;

}

5 Performance

We compare the performance of this algorithm with the standard implementa-
tion presented above:

#define RAND_MAX 2147483647.0

int x = random ();

float f = (double) x / RAND_MAX;

On my SPARCStation 2, the standard algorithm takes ∼ 332µs, including
the procedure call overhead. The proposed algorithm takes, on average, ∼

327µs, also including overhead. The particular values of these numbers are not
important, since they depend on details of the architecture and implementation;
the point is that the proposed algorithm can be implemented as efficiently as
the standard algorithm, and at the same time offer the desireable properties
described above.

The conventional approach generates 31 random bits, but can generate only
∼ 226 different values. Thus, in some sense it wastes 5 bits. The proposed
algorithm uses, on average, 25 random bits, and generates 230 different values.
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(Which by the same obviously fallacious logic implies that it is summoning
5 bits of randomness from nowhere.)

6 Conclusions

(I think this algorithm is a good thing, but I need to show that the problems I
have identified affect real applications, and that my algorithm fixes them, or at
least provides a way to do the same thing more efficiently.)
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