Why is Internet traffic self-similar?
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No Micro$oft
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What Is self-ssmilarity?

« Real-world: visually
similar over range of
spatial scales.

 Fractals. geometrically
similar over all spatial
scales.

o TIme-series.
statistically ssimilar over
range of time scales.




Network traffic

” e Ethernet and WAN traffic
1 | appear self-smilar.

[WillingerEtAl95]

X = timein varying units
y = packets/ unit time

. -  Visual self-similarity over
100s . §§l 5 orders of magnitude!
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Explanatory models

Model 1 derivation { Model

J L Behavior
abstraction verification
System  ExPlanation & System

Behavior

o Abstraction: isit realistic?

e Derivation: IS it correct?
 Verification: isthe behavior the same?
o Explanation: doesthisreally explain?



|deal gas law explained

o -~ .v
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e Abstraction: no interaction, elastic collision, etc.
 Derivation: you do the math (or smulation).
 Verification: most gas, most of the time.



Explanations of self-ssmilarity

fractional
ON/OFF > gaussian
model noise

A
M/G/infinity asymptotic
model self similarity

! L

{ Internet J empirical self-similarity ]
« Abstraction « Verification
e Two aggregation models  FGN isself-similar.
 Long-tailed distribution of o ASY isn't, but it can pass.

fllesizes



Distribution of file sizes

e Isit long-tailed?

e If s0, why?




Prob {file size < x}
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Cumulative distributions

Normal cdf
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X = range of values
y = Prob { value < x}

cdf maps valuesto
percentiles



Prob {file size < x}
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Skewed distributions

Skewed cdfs

7 —

—— normal
skewed

— lognormal
pareto

o

120000 40000 60000 80000 100000

File size (bytes)

e normal distributionis
symmetric.

« skewed has many
small values and some
large.

 lognormal even more
skewed.

e pareto even more
skewed.



Prob {file size < x}
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Logarithmic x axis

Skewed cdfs
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Prob {file size < x}
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Skewed cdfs, log x axis
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L og-log axes

e Complementary cdf:
Prob { value > x}

e Logy axisamplifies
tall behavior.

 Pareto distribution
ISastraight line.



Prob {lifetime > x}

Evidence of long tails
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0.014
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0.00001

Process lifetimes :
\\  |slong-talledness ar

empirical property?

e Long-tailed dist
converges to Pareto.

« How do we know it
keeps going?

--- Pareto model
— actual cdf
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Prob {file size > x}

File sizes in the WWW

File Sizes from Crovella dataset
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Where we are

e Some empirical evidence
of long tailed distributions.

« Explanatory model for
WWW files.

[ CarlsonDoyle99]

* No explanation for other
file systems.




Explanatory model

Goal:

« Model of user behavior that produces
long-tailed distributions.

Hypothesis.
« Most new files are copies of old files.

« Many new files are trandations of old files.
 New sizeisasmall multiple of the old size.



User Model

Moddl:

e Choose an existing file at random.

e Choose asmall multiplier at random.

e new filesize = old file size * multiplier
* Repeat.

Two parameters:
o |nitial file size.
 Variability of multipliers.



Prob {file size < x}
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Simulation of user model

Distribution of File Sizes

cdf from simulation
— actual cdf
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« 89,000 fileson
rocky.wellesley.edu

e Choose parameters
to fit the distribution.

 Fits pretty good!
e Analytic form?



Continuous model

* Replace discretefile
sizes with continuous.

e Simulation computes

numerical solution of

diffusion eguation.
« Solution of PDE

yields analytic model
of the distribution.




Prob {file size < x}
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Solve that PDE!

Simulation evolution

10 files
— 1000 files
— 100000 files
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e Distribution of file
sizesisnorma on a
log-Xx axis:
LOGNORMAL.



Prob {file size < x}
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Estimate those parameters!

File Sizes, Irlam dataset
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lognormal model
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e |rlam collected file
sizes from 500+
systems.

e Using the analytic
model we can
estimate parameters.

« Goodness of fit:
Kolmogorov-Smirnov
statistic.

 Range: 1.4t040

* Median: 8.0



Prob {file size > x}

Oh, no!

Skewed cdfs, log-log axes
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 The lognormal
distribution is not
long-tailed.

e Under either
aggregation mode,
lognormal file sizes
yield self-smilarity
over arange of time
scales, but not true
self-smilarity.



Prob {file size > x}

Tail behavior?

File Sizes from Crovella dataset
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« To explain self-similarity, we only need a Pareto tail.

 Log-log ccdf amplifiestail.
« Which model s better?



Theory choice

o Accuracy

« Scope

+ Consistency
« Simplicity

e Fruitfulness



Lognormal vs. Pareto

« Accuracy and Scope
 Diffusion model fitsthe bulk of the distribution.
» Pareto model sometimesfitsthe tail better.
« Consistency
 Diffusion model undermines self-sim explanation.
o SImplicity
e Pick ’em.
 Fruitfulness
 Long-tailed distributions are a nightmare for modelers.

« Explanatory model
 Carlson and Doyle only explain Web files.
e | think the diffusion model is more realistic.



Prob {file size > x}

Trade smplicity for accuracy

File Sizes from Crovella98
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e What if the
primordial soup
contained two files?

« Multimodal
(5-parameter)
lognormal mode!.

« Accuracy and
complexity
comparable to
Crovella' s hybrid
model.



|s Internet traffic really self-similar?

« What seems to be an empirical guestion depends on
theory choice.

* Theory choiceis not determined (entirely) by evidence.

Pareto tail | lognormal | other Pareto
| fractional | | fractional
ON/OFF gaussian gaussian
model noise | Pseudo noise

M/G/infinity | asymptotic | self similarity
model self similarity




Where does that |eave us?
o Redlist:

 Thereisarea world and we are capable of knowing about it.
 Rational theory choice is capable of selecting the right theory.
e The Internet either isor isnot really self-ssimilar.

o |nstrumentalist:

« Agnostic about the real world.
 Our theories are tools that either work or not.
o If it'suseful to model the Internet as self-similar, go ahead.

e Other flavors of anti-realist.
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