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What is self-similarity?

Real-world: visually 
similar over range of 
spatial scales.

Fractals: geometrically
 similar over all spatial 
scales.

Time-series: 
statistically similar over 
range of time scales.
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Network traffic
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Ethernet and WAN traffic 
appear self-similar.

     [WillingerEtAl95]

  x = time in varying units

  y = packets / unit time

Visual self-similarity over 
5 orders of magnitude!
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Explanatory models

System
Behavior
System

Model
Behavior

Model
derivation

verification

explanation

abstraction

Abstraction: is it realistic?

Derivation: is it correct?

Verification: is the behavior the same?

Explanation: does this really explain?
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Ideal gas law explained

Abstraction: no interaction, elastic collision, etc.

Derivation: you do the math (or simulation).

Verification: most gas, most of the time.
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Verification
FGN is self-similar.

ASY isn’t, but it can pass.
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Explanations of self-similarity

empirical self−similarity

ON/OFF
model

M/G/infinity
model

noise
gaussian
fractional

self similarity
asymptotic

Internet

Abstraction
Two aggregation models

Long-tailed distribution of 
file sizes
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Distribution of file sizes

Why is the distribution of file sizes 
long-tailed?
●



Explanatory model

Goal:

Model of user behavior that produces long-
tailed distributions.

Hypothesis:

Most new files are copies of old files.
Many new files are translations of old files.
New size is a small multiple of the old size.
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User Model

Model:

Choose an existing file at random.
Choose a small multiplier at random.
new file size = old file size * multiplier
Repeat.

Two parameters:

Initial file size.
Variability of multipliers.
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Simulation of user model
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Distribution of File Sizes

cdf from simulation
actual cdf

89,000 files on 
rocky.wellesley.edu

Choose parameters 
to fit the distribution.

Fits pretty well!

Analytic form?
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Continuous model

Replace discrete file 
sizes with continuous.

Simulation computes 
numerical solution of 
diffusion equation.

Solution of PDE 
yields analytic model  
of the distribution.
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Solve that PDE!
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Distribution of file 
sizes is normal on a 
log-x axis: 
LOGNORMAL.

●



Estimate those parameters!
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File Sizes, Irlam dataset

lognormal model
actual cdf

Irlam collected file 
sizes from 500+ 
systems.

Using the analytic 
model we can 
estimate parameters.

Goodness of fit: 
Kolmogorov-Smirnov
 statistic.

Range: 1.4 to 40

Median: 8.0
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Lognormal model of file sizes

Lognormal model is

(reasonably) accurate,
well-behaved,
explainable.

Only one problem:

It’s not a long-tailed 
distribution!
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Long-tailed distributions

Definition depends on context

For self-similiarity, tail behavior is definitive.
Tail must be asymptotic to Pareto distribution.

Why did we think it was long-tailed?

Review the evidence:

percentile-percentile plots
aest [CrovellaTaqqu99]
complementary cdf on log-log axes
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CCDF test 
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normal
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 Prob {value > x}

Log y axis amplifies
 tail behavior.

Pareto distribution 
is a straight line.

Non-long-tailed 
falls away with 
increasing steepness.
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File sizes on the WWW
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File Sizes from Crovella dataset

lognormal model
Pareto model
actual ccdf

CrovellaBestavros96 
instrumented browsers.

36208 unique file 
names.

Fitted Pareto 
distribution to ccdf. 

Carlson and Doyle 
propose explanatory 
model (HOT).
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ISP proxy server
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Feldmann et al. 
collected session sizes 
from an ISP.

They "estimate the 
slope of the 
corresponding linear 
regions."
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Server’s view
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File Sizes from NASA dataset

lognormal model
pareto model
actual ccdf

Arlitt and Williamson 
collected unique files 
served by web servers:

University of 
Saskatchewan

NASA’s Kennedy Center

ClarkNet (an ISP)

NCSA

Hard to characterize 
these datasets.

This one looks 
lognormal...
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Server’s view
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File Sizes from Saskatchewan dataset

lognormal model
pareto model
actual ccdf

...but this one looks 
Pareto (sort of).

Increasing slope in 
extreme tail?
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Server’s view
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File Sizes from Calgary dataset

lognormal model
pareto model
actual ccdf

The Pareto model 
is a better fit.

But the shape 
matches the 
lognormal model.

Methodology?
Estimate parameters,

 evaluate goodness of 
fit.

How do we evaluate
 overall behavior?

●

●

●

●

●



Another server
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Arlitt and Jin 
measured 20728  
files on World Cup 
site.

Some site-specific 
features.

Hard to 
characterize.
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Proxy server

Empirical Synthetic
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Arlitt et al. measured 16 
million unique HTML files 
from a proxy server.

Top figure shows 
lognormal model (cdf on 
log-x axis).

Bottom figure shows 
Pareto model (ccdf on log-
log axes).

Tail behavior characteristic
 of non-long-tailed dist.
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Where are we?

Some evidence for Pareto 
model.

Preponderance for 
lognormal model.

Good news for modelers.

Not terribly satisfying as 
an explanation.
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Hybrid models
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Arlitt et al. and Barford et 
al. proposed:

Bulk of distribution is 
lognormal.

Tail behavior is Pareto.

Good match for the bulk 
and the tail.

4-5 parameters.
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Multimodal model
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Extend lognormal 
model to two modes.

5 parameters (found 
by search to minimize 
K-S stat).

Better fit for tail 
behavior.
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Multimodal model
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Multimodal 
lognormal handles 
problem cases.

Long-tailed model 
is not necessary.
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Kuhn’s criteria

one more criterion

Theory choice

Accuracy

Scope

Consistency 

Simplicity

Fruitfulness

Explanatory model
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Lognormal vs. Pareto

Accuracy and Scope
Lognormal model fits the bulk of the distribution.

Pareto model sometimes fits the tail better.

Consistency
Lognormal model undermines self-sim explanation.

Simplicity
Pick ’em.

Fruitfulness
Long-tailed distributions are a nightmare for modelers.

Explanatory model
Carlson and Doyle only explain Web files.

I think the diffusion model is more realistic.
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Is Internet traffic really self-similar?

What seems to be an empirical question depends on 
theory choice.

Theory choice is not determined (entirely) by evidence.
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Where does that leave us?

Realist:
There is a real world and we are capable of knowing about it.

Rational theory choice is capable of selecting the right theory.

The Internet either is or is not really self-similar.

Instrumentalist:
Agnostic about the real world.

Our theories are tools that either work or not.

If it’s useful to model the Internet as self-similar, go ahead.

(recognizing differences in philosophic

disposition can forestall fruitless argument)
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