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My background:

B Predoc at San Diego Supercomputer Center.

B Dissertation on workload modeling, queue time
prediction and malleable job allocation for parallel
machines.

B Recent. Network measurement and modeling.
B Current: History-based prediction.




Connection?

B Resource allocation based on prediction.
B Prediction based on history.

B Historical data characterized by changepoints
(nonstationarity).




Three ways to characterize variability:

B Noise around a stationary level.
B Noise around an underlying trend.
B Abrupt changes in level: changepoints.

Important difference:

m Data prior to a changepoint is irrelevant to
performance after.




Example: wide area networks

B Some trends (accumulating queue).
B Many abrupt changepoints.

e Beginning and end of transfers.
e Routing changes.
e Hardware failure, replacement.




Example: parallel batch queues

B Some trends (daily cycles).

B Some abrupt changepoints.

e Start/completion of wide jobs.
e Queue policy changes.
e Hardware failure, replacement.




My claim:

B Many systems are characterized by changepoints
where data before a changepoint is irrelevant to
performance after.

B In these systems, good predictions depend on
changepoint detection, because old data is wrong.

Discussion?




Two kinds of prediction:

B Single value prediction.
B Predictive distribution.

e SUummary stats.
e Intervals.
e P(error > thresh)

o F|cost(error)




If you assume stationarity, life is good:

B Accumulate data indefinitely.
B Predictive distribution = observed distribution.

But this Is often not a good assumption.




If the system Is nonstationary:

B Fixed window? Exponential decay?
B Too far: obsolete data.
B Not far enough: loss of useful info.




If you know where the changepoints are:

B Use data back to the latest changepoint.
B Less information immediately after.




If you don’t know, you have to guess.

P(7) = prob of a changepoint at time ¢

Example:

B 150 data points.
m P(50)=0.7
B P(100) =0.5

How do you generate a predictive distribution?




Two steps:

m Derive P(i+): prob that ¢ is the latest changepoint.
B Compute weighted mix going back to each «.

Example:

P(50) = 0.7 P(100) = 0.5
P(®) =0.15 P(50+) =0.35 P(100+) = 0.5




Predictive distribution =

0.50 - edf(100,150) &
0.35 - edf(50,150) &
0.15 - edf(0,150)




So how do you generate the probabilities P(i+)?
Three steps:

B Bayes' theorem.
B Simple case: you know there is 1 changepoint.
B General case: unknown # of changepoints.




Bayes’ theorem (diachronic interpretation)

P(E|H)

PHIE) = —5

P(H)

B H Is a hypothesis, £ Is a body of evidence.




Unless you have a suite of exclusive hypotheses.

ZPE\H H;)

In that case life Is good.




m If you know there there is exactly one changepoint in
an interval...

B ...then the P(:) are exclusive hypotheses,
B and all you need is P(FE|q).

Which is pretty much a solved problem.




What if the # of changepoints is unknown?

B P(¢) are no longer exclusive.
m But the P(i+) are.
B And you can write a system of equations for P(i+).




P(i*) = P(i*|o) P(@)+ Y P(i*[j™") P(j*)

1<
m P(j*") is the prob that the second-to last
changepoint is at 1.
m P(i"|j7") reduces to the simple problem.

B P(©) is the prob that we have not seen two
changepoints.

B P(i"|@) reduces to the simple problem (plus).

Great, so what's P(;77)?




P(j*) =) PGIEY) P(KY)
k>j
B P(jT|kT) isjust P(j7) computed at time .
B So you can solve for P(") in terms of P(*T).
B And P("") in terms of P(T).

B And at every iteration you have a pretty good
estimate.

B Paging Dr. Jacobi!




Implementation:

m Need to keep n*/2 previous values.
m And n?/2 summary statistics.

B And it takes n? work to do an update.
B But, you only have to go back two changepoints,
B ...S0 you can keep n small.
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B The ubiguitous
Nile dataset.

B Change in 1898.

B Estimated probs
can be
mercurial.
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B Qualitative behavior seems good.

B Quantitative tests:

e COm
o [est
o [est

pare to GLR for online alarm problem.
oredictive distribution with synthetic data.

oredictive distribution with real data.
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Changepoint problems:

B Detection: online alarm problem.
B Location: offline partitioning.
B Tracking: online prediction.

Proposed method does all three. Starting simple...




Online alarm problem:

B Observe process in real time.

m /., and ¢ known.

B 7 and ;; unknown.

B Raise alarm ASAP after changepoint.
B Minimize delay.

B Minimize false alarm rate.
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GLR = generalized likelihood ratio.

B Compute decision function g;.

B F|g.| = 0 before the changepoint,
B ... Increases after.

m Alarm when g;. > h.

B GLR is optimal when g, is known.




CPP = change point probabllity
P(changepoint) = Z P(iT)

B Alarm when P(changepoint) > thresh.
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B Goodness =
lower mean
delay for same
false alarm rate.
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B Fix false alarm
rate = 5%

m Vary o.

m CPP does well
with small S/N.
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So it works on a simple problem.

Future work:

B Other changepoint problems (location, tracking).
B Other data distributions (lognormal).
B Testing robustness (real data, trends).




Related problem:

B How much categorical data to use?

B Example: predict queue time based on size, queue,
etc.

B Possible answer: narrowest category that yields two
changepoints.




Good news:

B Very general framework.
B Seems to work.
B Many possible applications.




Bad news:

B Need to apply and test in real application.
B n° space and time may limit scope.
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B More at
al | endowney. conl r esear ch/ changepol nt

B Or email downey@l | endowney. com




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

