Changepoint detectionfor time series prediction

1

Allen B. Downey

Olin College of Engineering

My background:

- **Predoc at San Diego Supercomputer Center.**
- Dissertation on workload modeling, queue time prediction and malleable job allocation for parallel machines.
- Recent: Network measurement and modeling.
- Current: History-based prediction.

Connection?

- Resource allocation based on prediction.
- Prediction based on history.
- Historical data characterized by changepoints (nonstationarity).

Three ways to characterize variability:

- Noise around a stationary level.
- Noise around an underlying trend.
- Abrupt changes in level: changepoints.

Important difference:

 Data prior to ^a changepoint is irrelevant to performance after.

Example: wide area networks

- Some trends (accumulating queue).
- Many abrupt changepoints.
	- \bullet **• Beginning and end of transfers.**
	- \bullet **• Routing changes.**
	- \bullet **• Hardware failure, replacement.**

Example: parallel batch queues

- Some trends (daily cycles).
- Some abrupt changepoints.
	- \bullet **• Start/completion of wide jobs.**
	- \bullet Queue policy changes.
	- \bullet **• Hardware failure, replacement.**

My claim:

- Many systems are characterized by changepoints where data before ^a changepoint is irrelevant toperformance after.
- In these systems, good predictions depend on changepoint detection, because old data is wrong.

Discussion?

Two kinds of prediction:

- Single value prediction.
- **Predictive distribution.**
	- \bullet **• Summary stats.**
	- \bullet **•** Intervals.
	- $P(error > thresh)$
	- \bullet $E[cost(error)]$

If you assume stationarity, life is good:

- Accumulate data indefinitely.
- **Predictive distribution = observed distribution.**

But this is often not ^a good assumption.

If the system is nonstationary:

- Fixed window? Exponential decay?
- Too far: obsolete data.
- Not far enough: loss of useful info.

If you know where the changepoints are:

- Use data back to the latest changepoint.
- **<u>■</u>** Less information immediately after.

If you don't know, you have to guess.

 $P(i) = \textsf{prob of a changepoint at time } i$

Example:

- 150 data points.
- $P(50) = 0.7$
- $P(100) = 0.5$

How do you generate ^a predictive distribution?

Two steps:

Derive $P(i+)$: prob that i is the latest changepoint. \blacksquare Compute weighted mix going back to each i. Example:

> $P(50) = 0.7$ $P(100) = 0.5$ $P(\emptyset) = 0.15$ $P(50+) = 0.35$ $P(100+) = 0.5$

Predictive distribution ⁼

- 0.50 · $\it{edf}(100,150) \oplus$
- 0.35 · $\operatorname{\it edf}(50,150) \oplus$
- 0.15 · $edf(0,150)$

So how do you generate the probabilities $P(i+)$? Three steps:

- Bayes' theorem.
- Simple case: you know there is ¹ changepoint.
- General case: unknown # of changepoints.

Bayes' theorem (diachronic interpretation)

$$
P(H|E) = \frac{P(E|H)}{P(E)}P(H)
$$

- \blacksquare H is a hypothesis, E is a body of evidence.
- $\hbox{\bf P}(H|E)$: posterior
- $\hbox{\bf P}(H)$: prior
- \blacksquare $P(E|H)$ is usually easy to compute.
- $\hbox{ \bf \textit{P}}\left(E\right)$ is often not.

Unless you have ^a suite of exclusive hypotheses.

$$
P(H_i|E) = \frac{P(E|H_i)P(H_i)}{P(E)}
$$

$$
P(E) = \sum_{H_j \in S} P(E|H_j)P(H_j)
$$

In that case life is good.

17

 \bullet

- If you know there there is exactly one changepoint in an interval...
- \blacksquare ...then the $P(i)$ are exclusive hypotheses,
- \blacksquare and all you need is $P(E|i).$

Which is pretty much ^a solved problem.

What if the # of changepoints is unknown?

- \blacksquare $P(i)$ are no longer exclusive.
- **B**ut the $P(i+)$ are.
- \blacksquare And you can write a system of equations for $P(i+)$.

$$
P(i^{+}) = P(i^{+}|\emptyset) P(\emptyset) + \sum_{j < i} P(i^{+} | j^{++}) P(j^{++})
$$

 $P(j^{++})$ is the prob that the second-to last changepoint is at i .

\blacksquare $P(i^+|j^{++})$ reduces to the simple problem.

 \blacksquare $P(\oslash)$ is the prob that we have not seen two changepoints.

■ $P(i^+| \oslash)$ reduces to the simple problem (plus).

Great, so what's $P(j^{++})$?

$$
P(j^{++}) = \sum_{k > j} P(j^{++} | k^+) P(k^+)
$$

 \blacksquare $P(j^{++}|k^+)$ is just $P(j^+)$ computed at time $k.$

- **So you can solve for** $P(^+)$ in terms of $P(^{++})$.
- **•** And $P(^{++})$ in terms of $P(^{+})$.
- And at every iteration you have ^a pretty good estimate.
- Paging Dr. Jacobi!

Implementation:

- **Need to keep** $n^2/2$ previous values.
- **And** $n^2/2$ summary statistics.
- **And it takes** n^2 work to do an update.
- But, you only have to go back two changepoints,
- \blacksquare ...so you can keep n small.

 \bullet

 \bullet

ó

 \bullet

۸

- **P** The ubiquitous Nile dataset.
- Change in 1898.
- Estimated probs can bemercurial.

 \bullet

ó

- **I** Can also detect change invariance.
- \blacksquare $\mu = 1, 0, 0$
- \blacksquare $\sigma = 1, 1, 0.5$
- E Estimated $P(i^+)$ is good.
- **Estimated** $P(i^{++})$ less certain.
- Qualitative behavior seems good. ■ Quantitative tests:
	- \bullet Compare to GLR for online alarm problem.
	- \bullet Test predictive distribution with synthetic data.
	- \bullet **• Test predictive distribution with real data.**

Changepoint problems:

Detection: online alarm problem.

- **Location: offline partitioning.**
- **Tracking: online prediction.**

Proposed method does all three. Starting simple...

Online alarm problem:

- Observe process in real time.
- \blacksquare μ_0 $_0$ and σ σ known.
- \blacksquare τ τ and μ_1 $_1$ unknown.
- Raise alarm ASAP after changepoint.
- Minimize delay.
- Minimize false alarm rate.

GLR ⁼ generalized likelihood ratio.

- Compute decision function g_k .
- $E[g_k] = 0$ before the changepoint,
- **Reference in the contract of the Contract Contro**ution and the measurement of the **measurement of the contract of the contrac**
- Alarm when g_{k} $_{k} > h$.
- GLR is optimal when μ_1 $_1$ is known.

CPP ⁼ change point probability

$$
P(chargepoint) = \sum_{i=0}^{n} P(i^+)
$$

• Alarm when $P(changepoint) > thresh$.

30

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

 \bullet

 \blacksquare

\n- $$
\mu = 0, 1
$$
\n- $\sigma = 1$
\n- $\tau \sim \text{Exp}(0.01)$
\n- **Goodness =** lower mean delay for same false alarm rate.
\n

31

 \bullet

 \bullet

 \bullet

- **P** Fix false alarmrate $= 5\%$
- Vary σ.
- CPP does well with small S/N .

So it works on ^a simple problem.

Future work:

- Other changepoint problems (location, tracking).
- Other data distributions (lognormal).
- Testing robustness (real data, trends).

Related problem:

- How much categorical data to use?
- **Example: predict queue time based on size, queue,** etc.
- **Possible answer: narrowest category that yields two** changepoints.

Good news:

- **No Very general framework.**
- Seems to work.
- Many possible applications.

Bad news:

- Need to apply and test in real application.
- \blacksquare n^2 space and time may limit scope.

■ More at

allendowney.com/research/changepoint

■ Or email downey@allendowney.com