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My background:

� Predoc at San Diego Supercomputer Center.

� Dissertation on workload modeling, queue time
prediction and malleable job allocation for parallel
machines.

� Recent: Network measurement and modeling.

� Current: History-based prediction.
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Connection?

� Resource allocation based on prediction.

� Prediction based on history.

� Historical data characterized by changepoints
(nonstationarity).
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Three ways to characterize variability:

� Noise around a stationary level.

� Noise around an underlying trend.

� Abrupt changes in level: changepoints.

Important difference:

� Data prior to a changepoint is irrelevant to
performance after.
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Example: wide area networks

� Some trends (accumulating queue).

� Many abrupt changepoints.

• Beginning and end of transfers.
• Routing changes.
• Hardware failure, replacement.
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Example: parallel batch queues

� Some trends (daily cycles).

� Some abrupt changepoints.

• Start/completion of wide jobs.
• Queue policy changes.
• Hardware failure, replacement.
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My claim:

� Many systems are characterized by changepoints
where data before a changepoint is irrelevant to
performance after.

� In these systems, good predictions depend on
changepoint detection, because old data is wrong.

Discussion?
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Two kinds of prediction:

� Single value prediction.

� Predictive distribution.

• Summary stats.
• Intervals.
• P (error > thresh)

• E[cost(error)]
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If you assume stationarity, life is good:

� Accumulate data indefinitely.

� Predictive distribution = observed distribution.

But this is often not a good assumption.
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If the system is nonstationary:

� Fixed window? Exponential decay?

� Too far: obsolete data.

� Not far enough: loss of useful info.
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If you know where the changepoints are:

� Use data back to the latest changepoint.

� Less information immediately after.
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If you don’t know, you have to guess.

P (i) = prob of a changepoint at time i

Example:

� 150 data points.

� P (50) = 0.7

� P (100) = 0.5

How do you generate a predictive distribution?
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Two steps:

� Derive P (i+): prob that i is the latest changepoint.

� Compute weighted mix going back to each i.

Example:

P (50) = 0.7 P (100) = 0.5

P (⊘) = 0.15 P (50+) = 0.35 P (100+) = 0.5
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Predictive distribution =

0.50 · edf(100, 150) ⊕

0.35 · edf(50, 150) ⊕

0.15 · edf(0, 150)
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So how do you generate the probabilities P (i+)?

Three steps:

� Bayes’ theorem.

� Simple case: you know there is 1 changepoint.

� General case: unknown # of changepoints.
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Bayes’ theorem (diachronic interpretation)

P (H|E) =
P (E|H)

P (E)
P (H)

� H is a hypothesis, E is a body of evidence.

� P (H|E): posterior

� P (H): prior

� P (E|H) is usually easy to compute.

� P (E) is often not.
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Unless you have a suite of exclusive hypotheses.

P (Hi|E) =
P (E|Hi)P (Hi)

P (E)

P (E) =
∑

Hj∈S

P (E|Hj)P (Hj)

In that case life is good.
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� If you know there there is exactly one changepoint in
an interval...

� ...then the P (i) are exclusive hypotheses,

� and all you need is P (E|i).

Which is pretty much a solved problem.
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What if the # of changepoints is unknown?

� P (i) are no longer exclusive.

� But the P (i+) are.

� And you can write a system of equations for P (i+).
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P (i+) = P (i+|⊘) P (⊘) +
∑

j<i

P (i+|j++) P (j++)

� P (j++) is the prob that the second-to last
changepoint is at i.

� P (i+|j++) reduces to the simple problem.

� P (⊘) is the prob that we have not seen two
changepoints.

� P (i+|⊘) reduces to the simple problem (plus).

Great, so what’s P (j++)?
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P (j++) =
∑

k>j

P (j++|k+) P (k+)

� P (j++|k+) is just P (j+) computed at time k.

� So you can solve for P (+) in terms of P (++).

� And P (++) in terms of P (+).

� And at every iteration you have a pretty good
estimate.

� Paging Dr. Jacobi!
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Implementation:

� Need to keep n2/2 previous values.

� And n2/2 summary statistics.

� And it takes n2 work to do an update.

� But, you only have to go back two changepoints,

� ...so you can keep n small.
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� Synthetic series
with two
changepoints.

� µ = −0.5, 0.5, 0.0

� σ = 1.0

� P (⊘) = 0.04
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� The ubiquitous
Nile dataset.

� Change in 1898.

� Estimated probs
can be
mercurial.
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� Can also detect
change in
variance.

� µ = 1, 0, 0

� σ = 1, 1, 0.5

� Estimated P (i+)
is good.

� Estimated
P (i++) less
certain.
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� Qualitative behavior seems good.

� Quantitative tests:

• Compare to GLR for online alarm problem.
• Test predictive distribution with synthetic data.
• Test predictive distribution with real data.
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Changepoint problems:

� Detection: online alarm problem.

� Location: offline partitioning.

� Tracking: online prediction.

Proposed method does all three. Starting simple...
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Online alarm problem:

� Observe process in real time.

� µ0 and σ known.

� τ and µ1 unknown.

� Raise alarm ASAP after changepoint.

� Minimize delay.

� Minimize false alarm rate.
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GLR = generalized likelihood ratio.

� Compute decision function gk.

� E[gk] = 0 before the changepoint,

� ... increases after.

� Alarm when gk > h.

� GLR is optimal when µ1 is known.
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CPP = change point probability

P (changepoint) =
n∑

i=0

P (i+)

� Alarm when P (changepoint) > thresh.
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� µ = 0, 1

� σ = 1

� τ ∼ Exp(0.01)

� Goodness =
lower mean
delay for same
false alarm rate.
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� Fix false alarm
rate = 5%

� Vary σ.

� CPP does well
with small S/N .
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So it works on a simple problem.

Future work:

� Other changepoint problems (location, tracking).

� Other data distributions (lognormal).

� Testing robustness (real data, trends).
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Related problem:

� How much categorical data to use?

� Example: predict queue time based on size, queue,
etc.

� Possible answer: narrowest category that yields two
changepoints.
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Good news:

� Very general framework.

� Seems to work.

� Many possible applications.
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Bad news:

� Need to apply and test in real application.

� n2 space and time may limit scope.
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� More at
allendowney.com/research/changepoint

� Or email downey@allendowney.com
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