DIAGNOSTIC 5 SOLUTION

MODELING AND SIMULATION .
I'm in evary*Lan

reaction_rate

reaction_rate takes an index (between o and 12) and a vector of
concentrations, and returns the reaction rate of the given reaction.

function res = reaction_rate(i, X)
% compute the rate of the (i)th reaction,
% given the vector of concentrations (X)

Figure 1: Cartoon from climateprogress.org.

% kcats are in (1/seconds)
kcat = [14.48 0.16 0.36 -Inf 0.16 0.36 -Inf 0.85 0.13 0.27 1.07 1.01];

% Kms are in (Mol/L)
Km = [37.17 0.46 0.09 -Inf 0.46 0.09 -Inf 0.25 1210 360 1300 1300];

% which enzyme and substrate pertain to each reaction?
enzyme = [1 1111112223 3];
substrate = [2 2223333455 4];

% enzyme concentrations in Mol/L
E = [9.8e-5 1le-4 3.02e-2];

if 1 ==

Vmax = 0.005;

Km = 250;

rate = Vmax * X(1) / (Km + X(1));
else

j = enzyme(i);
k = substrate(i);
rate = kcat(i) * E(j) * X(k) / (Km(i) + X(k));
end
res = rate;
end

The vectors enzyme and substrate indicate which enzyme and
substrate are involved in each reaction. This way of using vectors
makes it possible to avoid lots of if statements.



DIAGNOSTIC 5 SOLUTION

rate_func

rate_func has the usual interface for functions that work with
oded5. It takes time and a state vector as inputs and returns the
derivative of the state vector.

The state vector contains the concentrations of the six substrates,
in this order: Sunavailabler Savailabler D, M, MT, G.

function res = rate_func(t, X)

end

% compute the rate of change for each of the six substrates,
% given the vector of concentrations (X)
ro = reaction_rate(0, X);
for i=1:12
r(i) = reaction_rate(i, X);
end

% since rate constants are not available for two of the
% reactions, we have to fudge

r(4) = 0.05 x r(3);

r(7) = 0.05 * r(6);

% the following rates are in mMol/L / minute (or second?)
Sun = -r0;

Savail = r0 - r(l) - r(2) - r(3) - r(4);

D=r(1) - r(5) - r(6) - r(7) - r(8);

M=r(3) + r(6) + r(10) + r(11l) - r(9) - r(12);

MT = r(2) + r(5) - r(10) - r(11);

G=r(4) + r(7) + r(8) + r(9) + r(10) + r(11) + r(12);

% pack the results into a column vector
res = [Sun Savail D M MT G]';

Notice that the return value is a column vector, which makes
ode45 happy.

2



DIAGNOSTIC 5 SOLUTION

corn

corn uses the “Events” option of ode45 to stop when the concen-
tration of starch reaches a given final value. You can read about
options in Section 10.1 of the cat book.

function res = corn()
% run a simulation of the enzyme action in fuel alcohol production
% and return the time (in hours) to reduce the unavailable starch
% concentation to 0.01 (mMol/L)
options = odeset(’Events’, @event_func);

tend = 50 * 60 *x 60; % 50 hours in seconds
Sinit = 0.1512; % mMol/L

Sinit = Sinit / 1000; % now Mol/L

[T, M] = oded45(@rate_func, [0,tend], [Sinit 0 0 0 0 O], options);
plot(T, M)

% return the end time in hours
res = T(end) / 60 / 60;
end

function [value, isterminal, direction] = event_func(t, X)
% check whether the concentration of unavailable starch has
% reached its final value (in Mol/L)
value = X(1) - 0.01le-3;
isterminal = 1;
direction = -1;
end

A more general version of corn would take the final concentra-
tion as an input variable, which could be passed to event_func
as an input variable, but the mechanism is a little awkward. The
easiest alternative is to next event_func inside corn so it has direct
access to the variables defined in corn.



