DIAGNOSTIC 5 SOLUTION

MODELING AND SIMULATION .
I'm in evary*Lan

reaction_rate

reaction_rate takes an index (between o and 12) and a vector of
concentrations, and returns the reaction rate of the given reaction.

function res = reaction_rate(i, X)
% compute the rate of the (i)th reaction,
% given the vector of concentrations (X)

Figure 1: Cartoon from climateprogress.org.

% kcats are in (1/seconds)
kcat = [14.48 0.16 0.36 -Inf 0.16 0.36 -Inf 0.85 0.13 0.27 1.07 1.01];

% Kms are in (Mol/L)
Km = [37.17 0.46 0.09 -Inf 0.46 0.09 -Inf 0.25 1210 360 1300 1300];

% which enzyme and substrate pertain to each reaction?
enzyme = [1 1111112223 3];
substrate = [2 2223333455 4];

% enzyme concentrations in Mol/L
E = [9.8e-5 1le-4 3.02e-2];

if 1 ==

Vmax = 0.005;

Km = 250;

rate = Vmax * X(1) / (Km + X(1));
else

j = enzyme(i);
k = substrate(i);
rate = kcat(i) * E(j) * X(k) / (Km(i) + X(k));
end
res = rate;
end

The vectors enzyme and substrate indicate which enzyme and
substrate are involved in each reaction. This way of using vectors
makes it possible to avoid lots of if statements.
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rate_func

rate_func has the usual interface for functions that work with
oded5. It takes time and a state vector as inputs and returns the
derivative of the state vector.

The state vector contains the concentrations of the six substrates,
in this order: Sunavailabler Savailabler D, M, MT, G.

function res = rate_func(t, X)

end

% compute the rate of change for each of the six substrates,
% given the vector of concentrations (X)
ro = reaction_rate(0, X);
for i=1:12
r(i) = reaction_rate(i, X);
end

% since rate constants are not available for two of the
% reactions, we have to fudge

r(4) = 0.05 x r(3);

r(7) = 0.05 * r(6);

% the following rates are in mMol/L / minute (or second?)
Sun = -r0;

Savail = r0 - r(l) - r(2) - r(3) - r(4);

D=r(1) - r(5) - r(6) - r(7) - r(8);

M=r(3) + r(6) + r(10) + r(11l) - r(9) - r(12);

MT = r(2) + r(5) - r(10) - r(11);

G=r(4) + r(7) + r(8) + r(9) + r(10) + r(11) + r(12);

% pack the results into a column vector
res = [Sun Savail D M MT G]';

Notice that the return value is a column vector, which makes
ode45 happy.
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corn

corn uses the “Events” option of ode45 to stop when the concen-
tration of starch reaches a given final value. You can read about
options in Section 10.1 of the cat book.

function res = corn()
% run a simulation of the enzyme action in fuel alcohol production
% and return the time (in hours) to reduce the unavailable starch
% concentation to 0.01 (mMol/L)
options = odeset(’Events’, @event_func);

tend = 50 * 60 *x 60; % 50 hours in seconds
Sinit = 0.1512; % mMol/L

Sinit = Sinit / 1000; % now Mol/L

[T, M] = oded45(@rate_func, [0,tend], [Sinit 0 0 0 0 O], options);
plot(T, M)

% return the end time in hours
res = T(end) / 60 / 60;
end

function [value, isterminal, direction] = event_func(t, X)
% check whether the concentration of unavailable starch has
% reached its final value (in Mol/L)
value = X(1) - 0.01le-3;
isterminal = 1;
direction = -1;
end

A more general version of corn would take the final concentra-
tion as an input variable, which could be passed to event_func
as an input variable, but the mechanism is a little awkward. The
easiest alternative is to next event_func inside corn so it has direct
access to the variables defined in corn.



