
D I A G N O S T I C 5 S O L U T I O N

M O D E L I N G A N D S I M U L A T I O N

Figure 1: Cartoon from climateprogress.org.

reaction_rate

reaction_rate takes an index (between 0 and 12) and a vector of
concentrations, and returns the reaction rate of the given reaction.

function res = reaction_rate(i, X)
% compute the rate of the (i)th reaction,
% given the vector of concentrations (X)

% kcats are in (1/seconds)
kcat = [14.48 0.16 0.36 -Inf 0.16 0.36 -Inf 0.85 0.13 0.27 1.07 1.01];

% Kms are in (Mol/L)
Km = [37.17 0.46 0.09 -Inf 0.46 0.09 -Inf 0.25 1210 360 1300 1300];

% which enzyme and substrate pertain to each reaction?
enzyme = [1 1 1 1 1 1 1 2 2 2 3 3];
substrate = [2 2 2 2 3 3 3 3 4 5 5 4];

% enzyme concentrations in Mol/L
E = [9.8e-5 1e-4 3.02e-2];

if i == 0
Vmax = 0.005;
Km = 250;
rate = Vmax * X(1) / (Km + X(1));

else
j = enzyme(i);
k = substrate(i);
rate = kcat(i) * E(j) * X(k) / (Km(i) + X(k));

end
res = rate;

end

The vectors enzyme and substrate indicate which enzyme and
substrate are involved in each reaction. This way of using vectors
makes it possible to avoid lots of if statements.

1



diagnostic 5 solution 2

rate_func

rate_func has the usual interface for functions that work with
ode45. It takes time and a state vector as inputs and returns the
derivative of the state vector.

The state vector contains the concentrations of the six substrates,
in this order: Sunavailable, Savailable, D, M, MT, G.

function res = rate_func(t, X)
% compute the rate of change for each of the six substrates,
% given the vector of concentrations (X)
r0 = reaction_rate(0, X);
for i=1:12

r(i) = reaction_rate(i, X);
end

% since rate constants are not available for two of the
% reactions, we have to fudge
r(4) = 0.05 * r(3);
r(7) = 0.05 * r(6);

% the following rates are in mMol/L / minute (or second?)
Sun = -r0;
Savail = r0 - r(1) - r(2) - r(3) - r(4);
D = r(1) - r(5) - r(6) - r(7) - r(8);
M = r(3) + r(6) + r(10) + r(11) - r(9) - r(12);
MT = r(2) + r(5) - r(10) - r(11);
G = r(4) + r(7) + r(8) + r(9) + r(10) + r(11) + r(12);

% pack the results into a column vector
res = [Sun Savail D M MT G]’;

end

Notice that the return value is a column vector, which makes
ode45 happy.



diagnostic 5 solution 3

corn

corn uses the “Events” option of ode45 to stop when the concen-
tration of starch reaches a given final value. You can read about
options in Section 10.1 of the cat book.

function res = corn()
% run a simulation of the enzyme action in fuel alcohol production
% and return the time (in hours) to reduce the unavailable starch
% concentation to 0.01 (mMol/L)
options = odeset(’Events’, @event_func);

tend = 50 * 60 * 60; % 50 hours in seconds
Sinit = 0.1512; % mMol/L
Sinit = Sinit / 1000; % now Mol/L
[T, M] = ode45(@rate_func, [0,tend], [Sinit 0 0 0 0 0], options);
plot(T, M)

% return the end time in hours
res = T(end) / 60 / 60;

end

function [value, isterminal, direction] = event_func(t, X)
% check whether the concentration of unavailable starch has
% reached its final value (in Mol/L)
value = X(1) - 0.01e-3;
isterminal = 1;
direction = -1;

end

A more general version of corn would take the final concentra-
tion as an input variable, which could be passed to event_func
as an input variable, but the mechanism is a little awkward. The
easiest alternative is to next event_func inside corn so it has direct
access to the variables defined in corn.


