Homework 6: Semaphores

cs341 Allen B. Downey
Spring 2002 Computer Science Department

Due: Thursday 11 April

The purpose of this assignment is to write an implementation of a semaphore using the mutex
and condition variable provided by the POSIX thread library, and then to use semaphores to solve
a common synchronization problem.

Before starting you should read the rest of Chapter 3 from POSIX Threads and Section 8.3.2
in Nutt.

Get the code
1. Grab the files from

http://rocky.wellesley.edu/cs341/code/hw06/

and look them over.

2. The files lock.c and lock.h are a veneer over the pthread mutex. The files cond.c and
cond.h are a veneer over the pthread condition variable. Notice that the two veneers are
implemented slightly differently. A lock contains a mutex, but a cond is a condition variable.
Also notice that every time I call a pthread function I check the return value and print error
messages.

In your future life, if you find yourself working with C or C++, I highly recommend writing
veneers like this for the libraries you work with. They improve the readability of the rest of
your program, which makes it more likely to be correct.

3. T have also provided three versions of main, in three files. main.c contains a very simple test
of the semaphore. You should be able to compile it, but if you run it, it might seg fault.

array.c contains my array-checking code from the last assignment. For now, you should
look it over to see what I did to test the lock. You will use this code to test your semaphore
implementation.

coke.c contains the skeleton of a coke-delivery simulation. You will fill in the missing code.
4. Finally, take a look at semaphore.c and semaphore.h. They contain a skeleton of a
semaphore implementation.
Fill in some code

1. Fill in semaphore.c and semaphore.h with an implementation of a semaphore using a lock
and a condition variable.

2. Compile and run main.



Homework 6: Semaphores 2

3. Compile and run array.

4. Once you get those working, how confident do you feel that your implementation of semaphores
is correct? Which gives you more confidence, examination of the code or testing?

Coke machine

1. Compile and run coke. If you run it a couple of times it is likely that the counter will
sometimes be negative, indicating that one of the the synchronization constraints has been
violated.

2. The constant TIME BETWEEN_COKES controls the average interarrival time for consumers; the
constant TIME BETWEEN REFILLS is the average interarrival time for producers. Adjust these
values so that the producer comes often enough to keep the machine full (or overfull).

3. Add synchronization code to the producer and consumer to enforce exclusive access to the
variable cokes and to enforce the constraint that the number of the cokes is never negative
or greater than the capacity of the machine.

4. Compile and run coke.

What to turn in

Unlike the empirical experiments we have been doing, there is not much on this assignment to
measure. It’s mostly about the implementation of synchronization mechanisms (and a healthy
dose of C).

I would like you to write a report that explains what each part of the assignment is and
what you were trying to accomplish. Please present your code in a way that demonstrates it’s
correctness, as in the Little Book of Semaphores. You can leave out details like header files, type
definitions, constant definitions, etc. If your program compiles, then those things have to be right.
Just present the essential parts of the code, and make a supporting argument that demonstrates
their correctness. Also, please test each piece of code carefully and report the results of your tests.



