
Homework 4: Processor Scheduling

cs341 Allen B. Downey
Spring 2002 Computer Science Department

Due Monday 11 March.
The purpose of this assignment is to investigate the Linux scheduler and try to figure out

what’s happening in the kernel by running user-level experiments.

Preparation

1. I have written a program called alarm that executes an infinite loop and computes cosines
(for no good reason other than keeping the processor busy). Download it and Makefile

from http://rocky.wellesley.edu/cs341spring02/code/hw04/.

2. Notice that the program takes a command-line argument. Please read pages 201–206 of the
cow book for information about command-line arguments.

3. Makefile contains instructions for compiling this project. Please read pages 313–316 of the
cow book for information about Makefiles. To compile alarm, just type make alarm.

4. After you compile alarm, run it with the time command:

$ make alarm

gcc -o alarm alarm.c -lm

$ time ./alarm 3

Alarm clock

real 0m3.002s

user 0m3.010s

sys 0m0.000s

The message “Alarm clock” is printed by alarm when the 3-second alarm clock goes off. The
next three lines are produced by time to report the elapsed “real” time from the beginning
to the end of the program, the amount of CPU time the program executed in user mode,
and the amount of CPU time spent performing system calls on behalf of this process.

Notice that in this case, we managed to use 3.01 seconds of CPU time in only 3.002 seconds,
which is a pretty good indication that these reports are only approximate. Please print and
read the documentation of time for more information.

5. You can run two commands on the same line if you separate them with a semi-colon.

$ time ./alarm 3 ; time ./alarm 3

In this case, the two instances of alarm run sequentially and produce the same output we
saw before. Now try this:
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$ (time ./alarm 3 &) ; time ./alarm 3

The ampersand causes the first command to run in the background, so the two processes
run concurrently. The parentheses are necessary to keep the shell happy.

Look at the output of this command and make sure you understand it before you continue.

6. Write a program called cpuloop that runs a mathematically intensive loop for a fixed number
of iterations (hint: start with alarm.c). Make it take a command line argument that controls
the number of iterations. Add a line to the Makefile that specifies how to compile cpuloop.
Compile the program by running make cpuloop.

Calibrate the program so that the argument is approximately the run time in milliseconds.
The program should not print anything.

This program will be CPU-bound; that is, its run time will be primarily determined by
how much CPU time it gets. Other programs might be I/O-bound, meaning that their
performance is determined by the performance of one of the I/O systems, and relatively
insensitive to the amount of CPU that’s available.

Experiment 1

If you start two processes at the same time, you expect each of them to get about half the CPU
cycles. Test this hypothesis by running the following command:

$ (./alarm 10 &) ; time ./cpuloop 3000

Make sure that the alarm time is long enough that cpuloop completes before alarm. What
fraction of the CPU time did cpuloop get? Run your programs several times to get an idea of
how consistent your results are. If you see variation in the results, can you explain it? Warning:
make sure alarm completes before you start the next run.

Now instead of starting the programs at the same time, introduce a delay between when you
start alarm and when you start cpuloop:

$ (./alarm 10 &) ; sleep 1; time ./cpuloop 3000

Again, make sure cpuloop has time to complete before alarm finishes. As the delay increases,
what happens to the percentage of the CPU that cpuloop gets? What does this relationship tell
you about the processor scheduling policy?

Print and read the documentation of nice and use it to adjust the priority of alarm and
cpuloop. How much does the priority of the two processes have to differ before one of them gets
90% of the CPU?

As a possible extra exploration, plot the relationship between the difference in priority and the
ratio of CPU allocated to the processes.

Experiment 2: CPU-bound vs. I/O bound

Make a copy of cpuloop called ioloop. In ioloop, replace the mathematical busy work with
some I/O busy work. As one possibility, you could add a line that prints the value of i. Printing
things involves a lot of I/O-intensive interaction with the video card. Alternatively, you could
experiment with other I/O operations, like reading and writing files.
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Again, calibrate the program so that the command-line argument you provide determines the
run time of the program, approximately, in milliseconds.

Run the program for 10 seconds and compare the total CPU time (user + system) to the real
time. This ratio is sometimes called “utilization.” If it is significantly below 100%, it is probably
because the process is spending lots of time waiting for I/O.

As usual, run the program several times to get an idea of the variability in performance. Is
this process more or less variable than the CPU-bound process?

Run the program again with alarm running in the background. What effect do you expect the
background process to have on the performance of ioloop? What do you see?

Now try running cpuloop in the background and ioloop in the foreground. Tune the two
programs so that they finish at the same time. What effect does the foreground process have on
the background process? Is the scheduling succeeding at interleaving the two processes?

Experiment 3: I/O-bound vs. I/O-bound

Run two instances of ioloop concurrently and study how they interact and affect each other’s
performance.

Assignments

Here are your partners for this homework:

Train Cameron

Mushtaque Schwenck

Stadler Ahmad

Chang Masiello

Siyam Connor

Pollard Golder

Wan Muenchow

Choy Carlin Wada


